A neural network copula function approach for solving joint basic probability assignment in structural reliability analysis

连接词(语言学) 联合概率分布 人工神经网络 边际分布 计算机科学 数学优化 数学 人工智能 计量经济学 随机变量 统计
作者
Rui‐Shi Yang,Lijun Sun,Haibin Li,Yong Sik Yang
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:40 (6): 3096-3119 被引量:1
标识
DOI:10.1002/qre.3568
摘要

Abstract Applying evidence theory to structural reliability analysis under epistemic uncertainty, it is necessary to consider the correlation of evidence variables. Among them, solving the joint basic probability assignment (BPA) of the evidence variables is a crucial link. In this study, a solution method of joint BPA based on neural network copula function is proposed. This method is to automatically construct copula function through neural network, which avoids the process of selecting the optimal copula function. Firstly, the neural network copula function is constructed based on the sample set of evidence variables. Then, the expression for solving the joint BPA using the neural network copula function is derived through vectors. Furthermore, the expression is used to map the marginal BPA of evidence variables to joint BPA, thus realizing the solution of joint BPA. Finally, the effectiveness of this method is verified by three examples. The results show that the neural network copula function describes the data distribution better than the optimal copula function selected by the traditional method. In addition, there is actually an error in solving the reliability intervals using the traditional optimal copula function method, whereas the results of this paper's neural network copula function method are more accurate and better for decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
星辰大海应助Leexxxhaoo采纳,获得10
刚刚
ndhy发布了新的文献求助10
刚刚
wddfz发布了新的文献求助10
2秒前
脑洞疼应助xjl采纳,获得10
2秒前
讨厌的十九岁完成签到,获得积分10
3秒前
脑洞疼应助霸气店员采纳,获得10
4秒前
难过的踏歌完成签到,获得积分10
4秒前
Loongwhm完成签到,获得积分0
4秒前
mouxq发布了新的文献求助10
4秒前
6秒前
7秒前
红桃EDC完成签到,获得积分10
9秒前
Dmooou完成签到,获得积分10
9秒前
新火应助阿Mark采纳,获得20
11秒前
vague发布了新的文献求助10
12秒前
烟花应助尚尚尚采纳,获得10
13秒前
air-yi完成签到,获得积分0
14秒前
小蘑菇应助巴啦啦采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
昔日完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
zhang完成签到,获得积分10
18秒前
赵鲁唅发布了新的文献求助10
19秒前
善学以致用应助现代书雪采纳,获得10
19秒前
wddfz完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
Leexxxhaoo发布了新的文献求助10
20秒前
21秒前
Flllllll完成签到,获得积分10
22秒前
合适黑米发布了新的文献求助10
22秒前
秀丽棉花糖完成签到,获得积分20
22秒前
小新完成签到 ,获得积分10
22秒前
vague完成签到,获得积分10
23秒前
kkk发布了新的文献求助10
23秒前
一念来回完成签到,获得积分10
23秒前
聪明盈发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084