Recent advances in coacervation and underlying noncovalent molecular interaction mechanisms

凝聚 非共价相互作用 纳米技术 化学 高分子科学 材料科学 分子 生物化学 氢键 有机化学
作者
Qiongyao Peng,Tao Wang,Diling Yang,Xuwen Peng,Hao Zhang,Hongbo Zeng
出处
期刊:Progress in Polymer Science [Elsevier BV]
卷期号:153: 101827-101827 被引量:10
标识
DOI:10.1016/j.progpolymsci.2024.101827
摘要

Coacervation is a liquid-liquid phase separation phenomenon. It involves the formation of a dense coacervate phase, rich in concentrated materials, and a co-existing immiscible dilute supernatant. This phenomenon can occur either from a homogeneous aqueous solution (simple coacervation) or when two different macromolecular aqueous solutions (proteins, polymers, and colloids) are brought into contact (complex coacervation). Coacervation has historical significance as it may have played a role in the origin of life, concentrating nutritious materials through liquid-liquid phase separation. It also reveals the underlying mechanisms of many biological phenomena such as intracellular biomolecular condensates, extracellular matrices, squid beak's gradient properties, sessile organism's wet adhesion, Alzheimer's diseases, and more. Coacervation provides insights and inspires promising solutions in areas like artificial cells/tissues, gradient materials, gene/drug delivery, underwater adhesives, and beyond. The driving forces of coacervation are noncovalent molecular interactions, often referred to as 'chemistry beyond the molecule', including hydrophobic interaction, electrostatic interaction, hydrogen-bonding interaction, cation-π interaction, π-π interaction, multivalency, etc. In this work, we have systematically reviewed the underlying noncovalent molecular interactions of simple coacervation and complex coacervation, respectively. We summarize commonly used materials and their corresponding molecular structures, discussing their applications. Some remaining challenge issues and perspectives for future studies are also presented. Understanding the underlying noncovalent molecular interactions of coacervation, alongside insights into molecular compositions and structures, can better guide the design of novel materials, elucidate various biological phenomena, and contribute to the development and optimization of relevant engineering technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李爱国应助夢loey采纳,获得10
2秒前
我是老大应助chrysan采纳,获得10
4秒前
5秒前
qiqi发布了新的文献求助10
6秒前
lxgz完成签到,获得积分10
9秒前
9秒前
开朗寇发布了新的文献求助10
9秒前
刻苦雪晴发布了新的文献求助10
9秒前
李建勋完成签到,获得积分10
13秒前
莲子粥发布了新的文献求助10
13秒前
王明磊完成签到 ,获得积分10
14秒前
14秒前
15秒前
17秒前
情怀应助Steven采纳,获得10
21秒前
丘比特应助开朗寇采纳,获得10
21秒前
woxin发布了新的文献求助10
22秒前
忧伤的井发布了新的文献求助10
22秒前
Antonio完成签到 ,获得积分10
22秒前
22秒前
zhaoyg发布了新的文献求助10
24秒前
找文献啊找文献完成签到,获得积分0
24秒前
小醋酸完成签到,获得积分10
26秒前
热情路人发布了新的文献求助10
27秒前
我是老大应助归雁采纳,获得10
28秒前
李博士完成签到,获得积分10
33秒前
33秒前
苗条丹南完成签到 ,获得积分10
35秒前
小二郎应助热情路人采纳,获得10
35秒前
田様应助菜籽采纳,获得10
36秒前
一条蛆完成签到 ,获得积分10
36秒前
37秒前
39秒前
yeye完成签到,获得积分10
41秒前
米粒之珠亦放光华完成签到,获得积分10
42秒前
wanci应助moon采纳,获得10
42秒前
woxin完成签到,获得积分10
43秒前
畅快山兰完成签到 ,获得积分10
43秒前
传奇3应助潇潇雨歇采纳,获得10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315