Recent advances in coacervation and underlying noncovalent molecular interaction mechanisms

凝聚 非共价相互作用 纳米技术 化学 高分子科学 材料科学 分子 生物化学 氢键 有机化学
作者
Qiongyao Peng,Tao Wang,Diling Yang,Xuwen Peng,Hao Zhang,Hongbo Zeng
出处
期刊:Progress in Polymer Science [Elsevier BV]
卷期号:153: 101827-101827 被引量:10
标识
DOI:10.1016/j.progpolymsci.2024.101827
摘要

Coacervation is a liquid-liquid phase separation phenomenon. It involves the formation of a dense coacervate phase, rich in concentrated materials, and a co-existing immiscible dilute supernatant. This phenomenon can occur either from a homogeneous aqueous solution (simple coacervation) or when two different macromolecular aqueous solutions (proteins, polymers, and colloids) are brought into contact (complex coacervation). Coacervation has historical significance as it may have played a role in the origin of life, concentrating nutritious materials through liquid-liquid phase separation. It also reveals the underlying mechanisms of many biological phenomena such as intracellular biomolecular condensates, extracellular matrices, squid beak's gradient properties, sessile organism's wet adhesion, Alzheimer's diseases, and more. Coacervation provides insights and inspires promising solutions in areas like artificial cells/tissues, gradient materials, gene/drug delivery, underwater adhesives, and beyond. The driving forces of coacervation are noncovalent molecular interactions, often referred to as 'chemistry beyond the molecule', including hydrophobic interaction, electrostatic interaction, hydrogen-bonding interaction, cation-π interaction, π-π interaction, multivalency, etc. In this work, we have systematically reviewed the underlying noncovalent molecular interactions of simple coacervation and complex coacervation, respectively. We summarize commonly used materials and their corresponding molecular structures, discussing their applications. Some remaining challenge issues and perspectives for future studies are also presented. Understanding the underlying noncovalent molecular interactions of coacervation, alongside insights into molecular compositions and structures, can better guide the design of novel materials, elucidate various biological phenomena, and contribute to the development and optimization of relevant engineering technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风车术完成签到,获得积分10
2秒前
fgehfd发布了新的文献求助10
2秒前
Qyyy发布了新的文献求助10
2秒前
小二郎应助欢呼的盼望采纳,获得10
2秒前
妙脆角发布了新的文献求助10
3秒前
careyzhou完成签到,获得积分10
4秒前
aique发布了新的文献求助50
4秒前
5秒前
田様应助hyscoll采纳,获得10
5秒前
虚幻的跳跳糖完成签到 ,获得积分10
6秒前
上官若男应助刻录机采纳,获得10
8秒前
xie完成签到,获得积分10
8秒前
cadet完成签到 ,获得积分10
8秒前
fgehfd完成签到,获得积分10
8秒前
蜀黍完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
xie发布了新的文献求助10
12秒前
斯文败类应助Qyyy采纳,获得10
12秒前
潮潮发布了新的文献求助10
14秒前
不配.应助yang采纳,获得30
14秒前
Lucas应助cadet采纳,获得10
14秒前
小志完成签到,获得积分10
15秒前
在水一方应助qx采纳,获得10
15秒前
16秒前
oligo完成签到 ,获得积分10
16秒前
16秒前
研友_VZG7GZ应助Mine采纳,获得10
19秒前
WHITE完成签到,获得积分10
20秒前
礽粥粥发布了新的文献求助10
21秒前
科研通AI2S应助摩登灰太狼采纳,获得10
22秒前
23秒前
叮叮当当lx完成签到,获得积分10
25秒前
苹果骑士完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
科里斯皮尔应助mmssdd采纳,获得10
27秒前
欢呼的盼望完成签到,获得积分10
27秒前
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238283
求助须知:如何正确求助?哪些是违规求助? 3772224
关于积分的说明 11846552
捐赠科研通 3428249
什么是DOI,文献DOI怎么找? 1881387
邀请新用户注册赠送积分活动 933707
科研通“疑难数据库(出版商)”最低求助积分说明 840524