Illustrating an Effective Workflow for Accelerated Materials Discovery

工作流程 计算机科学 数据发现 云计算 数据科学 数据管理 样品(材料) 数据共享 领域(数学分析) 数据库 万维网 元数据 医学 数学分析 化学 替代医学 数学 色谱法 病理 操作系统
作者
Mrinalini Mulukutla,Anna K. Person,Sven Voigt,Lindsey Kuettner,Branden B. Kappes,Danial Khatamsaz,Robert Robinson,Davide Mula,Wenle Xu,Daniel O. Lewis,Hongkyu Eoh,Kailu Xiao,Haoren Wang,Jaskaran Singh Saini,Raj Mahat,Trevor Hastings,Matthew Skokan,Vahid Attari,Michael Elverud,James D. Paramore,Brady G. Butler,Kenneth S. Vecchio,Surya R. Kalidindi,Douglas Allaire,И. Караман,Edwin L. Thomas,George M. Pharr,Ankit Srivastava,Raymundo Arróyave
出处
期刊:Integrating materials and manufacturing innovation [Springer Nature]
标识
DOI:10.1007/s40192-024-00357-3
摘要

Algorithmic materials discovery is a multi-disciplinary domain that integrates insights from specialists in alloy design, synthesis, characterization, experimental methodologies, computational modeling, and optimization. Central to this effort is a robust data management system paired with an interactive work platform. This platform should empower users to not only access others data but also integrate their analyses, paving the way for sophisticated data pipelines. To realize this vision, there is a need for an integrative collaboration platform, streamlined data sharing and analysis tools, and efficient communication channels. Such a collaborative mechanism should transcend geographical barriers, facilitating remote interaction and fostering a challenge-response dynamic. In this paper, we present our ongoing efforts in addressing the critical challenges related to an accelerated Materials Discovery Framework as a part of the High-Throughput Materials Discovery for Extreme Conditions Initiative. Our BIRDSHOT Center has successfully harnessed various tools and strategies, including the utilization of cloud-based storage, a standardized sample naming convention, a structured file system, the implementation of sample travelers, a robust sample tracking method, and the incorporation of knowledge graphs for efficient data management. Additionally, we present the development of a data collection platform, reinforcing seamless collaboration among our team members. In summary, this paper provides an illustration and insight into the various elements of an efficient and effective workflow within an accelerated materials discovery framework while highlighting the dynamic and adaptable nature of the data management tools and sharing platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zyl完成签到,获得积分10
1秒前
大壳完成签到,获得积分10
1秒前
苏西完成签到,获得积分10
2秒前
爆米花应助ttt采纳,获得10
2秒前
0099发布了新的文献求助10
2秒前
科研通AI2S应助hello采纳,获得10
3秒前
李健应助111采纳,获得10
3秒前
丘比特应助太阳雨采纳,获得10
3秒前
5秒前
大壳发布了新的文献求助10
5秒前
123发布了新的文献求助20
6秒前
明理的若灵完成签到,获得积分10
6秒前
NexusExplorer应助孤独的蚂蚁采纳,获得10
6秒前
jimmysea完成签到,获得积分20
7秒前
jinshijie完成签到 ,获得积分10
7秒前
张仁斌发布了新的文献求助10
7秒前
深情安青应助友好的半仙采纳,获得10
8秒前
9秒前
五棵松恶霸完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
简单的尔风完成签到 ,获得积分10
14秒前
天天发布了新的文献求助10
15秒前
111完成签到,获得积分10
15秒前
英姑应助ppwl采纳,获得10
17秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
18秒前
hlx年少发布了新的文献求助10
18秒前
JG发布了新的文献求助10
18秒前
19秒前
20秒前
黑包包大人完成签到,获得积分10
21秒前
21秒前
干脆苹果发布了新的文献求助10
22秒前
发发发完成签到,获得积分10
23秒前
未雨绸缪完成签到,获得积分10
23秒前
23秒前
lull发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806811
求助须知:如何正确求助?哪些是违规求助? 3351524
关于积分的说明 10354611
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684489
邀请新用户注册赠送积分活动 809716
科研通“疑难数据库(出版商)”最低求助积分说明 765635