3D Hyperspectral Data Analysis with Spatially Aware Deep Learning for Diagnostic Applications

高光谱成像 化学 遥感 人工智能 计算机科学 地质学
作者
Ruihao Luo,Shuxia Guo,Julian Hniopek,Thomas Bocklitz
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05549
摘要

Nowadays, with the rise of artificial intelligence (AI), deep learning algorithms play an increasingly important role in various traditional fields of research. Recently, these algorithms have already spread into data analysis for Raman spectroscopy. However, most current methods only use 1-dimensional (1D) spectral data classification, instead of considering any neighboring information in space. Despite some successes, this type of methods wastes the 3-dimensional (3D) structure of Raman hyperspectral scans. Therefore, to investigate the feasibility of preserving the spatial information on Raman spectroscopy for data analysis, spatially aware deep learning algorithms were applied into a colorectal tissue data set with 3D Raman hyperspectral scans. This data set contains Raman spectra from normal, hyperplasia, adenoma, carcinoma tissues as well as artifacts. First, a modified version of 3D U-Net was utilized for segmentation; second, another convolutional neural network (CNN) using 3D Raman patches was utilized for pixel-wise classification. Both methods were compared with the conventional 1D CNN method, which worked as baseline. Based on the results of both epithelial tissue detection and colorectal cancer detection, it is shown that using spatially neighboring information on 3D Raman scans can increase the performance of deep learning models, although it might also increase the complexity of network training. Apart from the colorectal tissue data set, experiments were also conducted on a cholangiocarcinoma data set for generalizability verification. The findings in this study can also be potentially applied into future tasks regarding spectroscopic data analysis, especially for improving model performance in a spatially aware way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
zyq发布了新的文献求助10
4秒前
大米粒发布了新的文献求助10
4秒前
4秒前
芝士铁板鸡完成签到,获得积分10
6秒前
AlpacasYestoo发布了新的文献求助10
7秒前
7秒前
yx发布了新的文献求助10
7秒前
CRane完成签到,获得积分10
8秒前
8秒前
搞怪的寄文完成签到 ,获得积分10
9秒前
科研通AI2S应助执着绿草采纳,获得10
9秒前
9秒前
科研通AI5应助xia采纳,获得10
9秒前
shuang0116应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
evil发布了新的文献求助10
12秒前
JamesPei应助tianshicanyi采纳,获得10
13秒前
14秒前
yx完成签到,获得积分10
14秒前
阿俊1212发布了新的文献求助10
14秒前
FashionBoy应助xiaoxiao采纳,获得30
16秒前
lujiajia发布了新的文献求助10
18秒前
bobby仔完成签到,获得积分10
18秒前
20秒前
Hello应助敏敏猫采纳,获得10
21秒前
蓝天应助maimai采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
次元发布了新的文献求助10
26秒前
lujiajia完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4635955
求助须知:如何正确求助?哪些是违规求助? 4030605
关于积分的说明 12471066
捐赠科研通 3717277
什么是DOI,文献DOI怎么找? 2051569
邀请新用户注册赠送积分活动 1082731
科研通“疑难数据库(出版商)”最低求助积分说明 964940