Transfer Learning Empowered Multiple‐Indicator Optimization Design for Terahertz Quasi‐Bound State in the Continuum Biosensors

太赫兹辐射 生物传感器 学习迁移 计算机科学 国家(计算机科学) 纳米技术 材料科学 光电子学 人工智能 算法
作者
Shengfeng Wang,Bingwei Liu,Xu Wu,Zuanming Jin,Yiming Zhu,Linjie Zhang,Yan Peng
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202504855
摘要

Abstract Terahertz metasurface biosensors based on the quasi‐bound state in the continuum (QBIC) offer label‐free, rapid, and ultrasensitive biomedical detection. Recent advances in deep learning facilitate efficient, fast, and customized design of such metasurfaces. However, prior approaches primarily establish one‐to‐one mappings between structure and optical response, neglecting the trade‐offs among key performance indicators. This study proposes a pioneering method leveraging transfer learning to optimize multiple indicators in metasurface biosensor design. For the first time, multiple‐indicator comprehensive optimization of the quality (Q) factor, figure of merit (FoM), and effective sensing area (ESA) is achieved. The two‐stage transfer learning method pre‐trains on low‐dimensional datasets to extract shared features, followed by fine‐tuning on complex, high‐dimensional tasks. By adopting frequency shift as a unified criterion, the contribution ratios of these indicators are quantified as 26.09% for the Q factor, 48.42% for FoM, and 25.49% for ESA. Compared to conventional deep‐learning approaches, the proposed method reduces data requirements by 50%. The biosensor designed using this method detects the biomarker homocysteine, achieving detection at the ng µL −1 level, with experimental results closely matching theoretical predictions. This work establishes a novel paradigm for metasurface biosensor design, paving the way for transformative advances in trace biological detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
7秒前
9秒前
9秒前
打打应助断章采纳,获得10
10秒前
Wei完成签到 ,获得积分10
12秒前
Fancy发布了新的文献求助30
12秒前
13秒前
15秒前
完美世界应助Ss采纳,获得10
18秒前
杆杆发布了新的文献求助10
19秒前
王运静发布了新的文献求助10
20秒前
刘刘刘monkey完成签到,获得积分20
20秒前
chiyu完成签到,获得积分10
21秒前
缥缈书本完成签到 ,获得积分10
22秒前
23秒前
科研通AI5应助杆杆采纳,获得10
28秒前
断章发布了新的文献求助10
28秒前
duoduo完成签到,获得积分10
30秒前
研友_ZGDVz8完成签到,获得积分10
37秒前
CipherSage应助maxin采纳,获得10
41秒前
46秒前
黑白完成签到,获得积分10
52秒前
皮卡丘发布了新的文献求助10
52秒前
星辰大海应助cai采纳,获得10
52秒前
科研通AI5应助刘小明采纳,获得10
53秒前
研友_RLNzvL发布了新的文献求助10
57秒前
1分钟前
1分钟前
1分钟前
maxin发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315