Enzyme Enhancement Through Computational Stability Design Targeting NMR-Determined Catalytic Hotspots

化学 催化作用 计算化学 组合化学 生物化学
作者
Luis I. Gutierrez-Rus,Eva Vos,David Pantoja‐Uceda,Gyula Hoffka,Jose Gutierrez-Cardenas,Mariano Ortega‐Muñoz,Valeria A. Risso,M. Ángeles Jiménez,Shina Caroline Lynn Kamerlin,José M. Sánchez‐Ruiz
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c09428
摘要

Enzymes are the quintessential green catalysts, but realizing their full potential for biotechnology typically requires improvement of their biomolecular properties. Catalysis enhancement, however, is often accompanied by impaired stability. Here, we show how the interplay between activity and stability in enzyme optimization can be efficiently addressed by coupling two recently proposed methodologies for guiding directed evolution. We first identify catalytic hotspots from chemical shift perturbations induced by transition-state-analogue binding and then use computational/phylogenetic design (FuncLib) to predict stabilizing combinations of mutations at sets of such hotspots. We test this approach on a previously designed de novo Kemp eliminase, which is already highly optimized in terms of both activity and stability. Most tested variants displayed substantially increased denaturation temperatures and purification yields. Notably, our most efficient engineered variant shows a ∼3-fold enhancement in activity (kcat ∼ 1700 s-1, kcat/KM ∼ 4.3 × 105 M-1 s-1) from an already heavily optimized starting variant, resulting in the most proficient proton-abstraction Kemp eliminase designed to date, with a catalytic efficiency on a par with naturally occurring enzymes. Molecular simulations pinpoint the origin of this catalytic enhancement as being due to the progressive elimination of a catalytically inefficient substrate conformation that is present in the original design. Remarkably, interaction network analysis identifies a significant fraction of catalytic hotspots, thus providing a computational tool which we show to be useful even for natural-enzyme engineering. Overall, our work showcases the power of dynamically guided enzyme engineering as a design principle for obtaining novel biocatalysts with tailored physicochemical properties, toward even anthropogenic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yolen LI完成签到,获得积分10
1秒前
安辰发布了新的文献求助10
1秒前
小蘑菇应助Season采纳,获得10
2秒前
丽丽完成签到,获得积分10
2秒前
叮叮咚咚完成签到,获得积分10
3秒前
3秒前
Liza0711完成签到,获得积分20
4秒前
6秒前
leolin完成签到,获得积分10
6秒前
cherry111完成签到,获得积分10
7秒前
ywzwszl发布了新的文献求助10
7秒前
茉莉发布了新的文献求助10
8秒前
wy.he完成签到,获得积分0
9秒前
Arthur完成签到,获得积分10
10秒前
11秒前
悦耳羽毛完成签到,获得积分10
12秒前
13秒前
ChenZM完成签到,获得积分10
14秒前
Ericlee发布了新的文献求助10
14秒前
dudu发布了新的文献求助10
15秒前
Season发布了新的文献求助10
17秒前
xulin完成签到 ,获得积分10
18秒前
段采萱发布了新的文献求助10
20秒前
烂漫草莓完成签到,获得积分20
21秒前
Ericlee完成签到,获得积分10
23秒前
Maestro_S应助90采纳,获得10
23秒前
dujinjun完成签到,获得积分10
23秒前
24秒前
24秒前
26秒前
情怀应助Echo采纳,获得30
26秒前
QiJiLuLu完成签到,获得积分10
27秒前
AA1Z发布了新的文献求助10
28秒前
28秒前
29秒前
共享精神应助尛瞐慶成采纳,获得10
29秒前
佘炭炭完成签到,获得积分10
30秒前
科研通AI5应助dudu采纳,获得10
30秒前
Season完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761