AlphaFold2's training set powers its predictions of some fold‐switched conformations

计算生物学 训练集 蛋白质二级结构 集合(抽象数据类型) 蛋白质结构 生物系统 生物 计算机科学 人工智能 生物化学 程序设计语言
作者
Joseph W. Schafer,Lauren L. Porter
出处
期刊:Protein Science [Wiley]
卷期号:34 (4)
标识
DOI:10.1002/pro.70105
摘要

AlphaFold2 (AF2), a deep-learning-based model that predicts protein structures from their amino acid sequences, has recently been used to predict multiple protein conformations. In some cases, AF2 has successfully predicted both dominant and alternative conformations of fold-switching proteins, which remodel their secondary and/or tertiary structures in response to cellular stimuli. Whether AF2 has learned enough protein folding principles to reliably predict alternative conformations outside of its training set is unclear. Previous work suggests that AF2 predicted these alternative conformations by memorizing them during training. Here, we use CFold-an implementation of the AF2 network trained on a more limited subset of experimentally determined protein structures-to directly test how well the AF2 architecture predicts alternative conformations of fold switchers outside of its training set. We tested CFold on eight fold switchers from six protein families. These proteins-whose secondary structures switch between α-helix and β-sheet and/or whose hydrogen bonding networks are reconfigured dramatically-had not been tested previously, and only one of their alternative conformations was in CFold's training set. Successful CFold predictions would indicate that the AF2 architecture can predict disparate alternative conformations of fold-switched conformations outside of its training set, while unsuccessful predictions would suggest that AF2 predictions of these alternative conformations likely arise from association with structures learned during training. Despite sampling 1300-4300 structures/protein with various sequence sampling techniques, CFold predicted only one alternative structure outside of its training set accurately and with high confidence while also generating experimentally inconsistent structures with higher confidence. Though these results indicate that AF2's current success in predicting alternative conformations of fold switchers stems largely from its training data, results from a sequence pruning technique suggest developments that could lead to a more reliable generative model in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
敏宝发布了新的文献求助10
2秒前
阔达磬发布了新的文献求助10
5秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
5秒前
maodou发布了新的文献求助10
5秒前
干净的小馒头完成签到 ,获得积分10
5秒前
6秒前
8秒前
贺兰发布了新的文献求助20
8秒前
9秒前
NexusExplorer应助surefire采纳,获得10
9秒前
10秒前
烟花应助Ellery采纳,获得10
10秒前
Jenny发布了新的文献求助20
12秒前
疯狂的念双完成签到,获得积分10
12秒前
科目三应助maodou采纳,获得10
13秒前
11发布了新的文献求助10
14秒前
15秒前
优秀笑寒发布了新的文献求助10
15秒前
15秒前
17秒前
科研通AI2S应助000采纳,获得10
17秒前
19秒前
出门见喜完成签到,获得积分10
20秒前
万里发布了新的文献求助10
21秒前
surefire发布了新的文献求助10
21秒前
wanci应助11采纳,获得10
22秒前
烟花应助lelele采纳,获得10
22秒前
yrt发布了新的文献求助10
25秒前
25秒前
26秒前
月月完成签到,获得积分10
27秒前
丘比特应助surefire采纳,获得10
28秒前
一路芬芳完成签到,获得积分20
28秒前
秋秋发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
NexusExplorer应助贺兰采纳,获得10
30秒前
30秒前
yrt完成签到,获得积分10
32秒前
阔达磬完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
School Psychology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4027235
求助须知:如何正确求助?哪些是违规求助? 3566802
关于积分的说明 11352738
捐赠科研通 3297920
什么是DOI,文献DOI怎么找? 1816117
邀请新用户注册赠送积分活动 890550
科研通“疑难数据库(出版商)”最低求助积分说明 813692