Air‐to‐Ground Target Detection and Tracking Based on Dual‐Stream Fusion of Unmanned Aerial Vehicle

跟踪(教育) 对偶(语法数字) 遥感 融合 人工智能 计算机科学 环境科学 地理 心理学 艺术 教育学 语言学 哲学 文学类
作者
Chuanyun Wang,Jianqi Yang,Chuanyun Wang,Qian Gao,Qiong Liu,Tian Wang,Anqi Hu,Linlin Wang
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22592
摘要

ABSTRACT Both visible and infrared images are important sources of intelligence information on the battlefield, and air‐to‐ground reconnaissance by UAV is an important means to obtain intelligence. However, there are great challenges in ground target detection and tracking, especially in complex battlefield environments. Aiming at the problem of insufficient accuracy of target detection by a single type of sensor in the battlefield environment at this stage, a target detection method by fusion of visible and infrared images is proposed in this paper, which is called ReconnaissanceFusion‐YOLO (RF‐YOLO), and with the help of infrared imagery, it can effectively improve the accuracy of target detection in the case of insufficient light. The performance of target detection in the battlefield is significantly improved by introducing two key innovative modules: dual feature fusion (DFF) module and feature fusion corrector (FFC) module. The DFF module enhances multi‐channel feature fusion through a novel concatenation and channel‐wise attention mechanism, while the FFC module performs feature correction between parallel streams using spatial and channel‐wise weights, addressing noise and uncertainty in different modalities. These modules are integrated on top of a dual‐stream YOLO architecture, allowing for effective fusion of visible and infrared information. RF‐YOLO was trained and evaluated using the FLIR data set, containing 5142 pairs of strictly aligned visible and infrared images. Results demonstrate that RF‐YOLO significantly outperforms benchmark networks in terms of robustness requirements. Specifically, the large model of RF‐YOLO achieves an mAP of 0.831, which is a significant improvement compared to the YOLOv5l inf benchmark's 0.739. This represents an improvement of over 12% in detection accuracy. Additionally, RF‐YOLO offers a Nano version that balances accuracy and speed. The Nano version achieves an mAP of 0.765, while maintaining a model size of only 11.5 MB, making it suitable for deployment on UAV edge computing devices with limited resources. To validate the practical applicability of our approach, this paper successfully implements target detection and tracking on a real UAV's edge computing device using the ROS system and SiameseRPN, combined with the proposed RF‐YOLO. Real‐world flight tests were conducted on an internal playground, demonstrating the effectiveness of our method in actual UAV applications. The system achieved a processing rate of approximately 10 fps at 640 × 640 resolution on an NVIDIA TX2 edge computing device, showcasing its real‐time performance capability in practical scenarios. This study contributes to enhancing UAV‐based battlefield reconnaissance capabilities by improving the accuracy and robustness of target detection and tracking in complex environments. The proposed RF‐YOLO method, along with its successful implementation on a real UAV platform, provides a promising solution for advanced military intelligence gathering and decision‐making support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咋没人了发布了新的文献求助10
1秒前
重要的醉山完成签到,获得积分20
5秒前
不知道完成签到,获得积分10
7秒前
7秒前
FashionBoy应助琳琳采纳,获得10
8秒前
我是老大应助飘逸平蓝采纳,获得10
9秒前
咋没人了完成签到,获得积分10
11秒前
向雅发布了新的文献求助10
11秒前
科研小白完成签到,获得积分10
14秒前
wbgwudi完成签到,获得积分10
15秒前
16秒前
大个应助昏睡的朝雪采纳,获得10
17秒前
大个应助hhcosy采纳,获得10
19秒前
小亿发布了新的文献求助10
21秒前
荷包蛋完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
HJJHJH发布了新的文献求助10
29秒前
JOKER完成签到 ,获得积分10
29秒前
鄢廷芮完成签到 ,获得积分10
30秒前
乐乐应助HJJHJH采纳,获得10
33秒前
36秒前
文静尔风发布了新的文献求助30
38秒前
38秒前
海盐气泡水完成签到,获得积分10
41秒前
42秒前
43秒前
hhcosy发布了新的文献求助10
43秒前
单纯的小土豆完成签到,获得积分10
44秒前
WilliamChan发布了新的文献求助30
47秒前
量子星尘发布了新的文献求助10
49秒前
亦依然完成签到 ,获得积分10
50秒前
文静尔风完成签到,获得积分10
50秒前
52秒前
54秒前
58秒前
59秒前
高山流水完成签到,获得积分10
1分钟前
Jalynn2044完成签到 ,获得积分10
1分钟前
HJJHJH发布了新的文献求助10
1分钟前
希法完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862701
求助须知:如何正确求助?哪些是违规求助? 3405263
关于积分的说明 10643922
捐赠科研通 3128761
什么是DOI,文献DOI怎么找? 1725437
邀请新用户注册赠送积分活动 831042
科研通“疑难数据库(出版商)”最低求助积分说明 779516