亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Reinforcement Learning Based Large-Scale Refinery Production Scheduling Algorithm

计算机科学 调度(生产过程) 作业车间调度 遗传算法调度 炼油厂 公平份额计划 流水车间调度 数学优化 动态优先级调度 两级调度 单调速率调度 强化学习 分布式计算 算法 工程类 人工智能 数学 地铁列车时刻表 操作系统 废物管理
作者
Yuandong Chen,Jinliang Ding,Qingda Chen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6041-6055 被引量:3
标识
DOI:10.1109/tase.2023.3321612
摘要

Refinery production scheduling is a mixed-integer programming problem, which exists the issue of combinational explosion. Thus, solving a large-scale refinery production scheduling problem is time-consuming. This article proposes an approximate solution framework based on reinforcement learning (RL) for large-scale long-time refinery production scheduling problems to rapidly obtain a satisfactory solution. In the proposed algorithm, the Proximal Policy Optimization algorithm is used to process the continuous action. To address the cold start issue of RL in refinery scheduling problem, we present an initialization method for the actor of agent, which utilizes the operation knowledge of tractable small-scale problems to initialize the actor network, and the agent is trained in the environment of large-scale problems. Hence, the convergence of the RL algorithm is greatly accelerated. In addition, the product flowrate concept is used to express the state, making the scheduling agent scalable in terms of scheduling horizon. Experimental studies show, to large-scale refinery scheduling problems, the proposed algorithm can obtain better solutions than that of the CPLEX solver and the existing evolutionary algorithm in a much shorter solving time of the two methods. Note to Practitioners —Scheduling is a link between planning and execution, and it can bring huge economic benefits to the refinery enterprises. With the enlargement of scheduling horizon, the scale of scheduling problems increases dramatically. How to deal with this large-scale scheduling problem caused by a long scheduling horizon is a significant problem. In this paper, the proposed method learns a decision-maker by reinforcement learning and applies to large-scale problems to obtain a good solution quickly. The proposed method is essentially a heuristic algorithm, and it is easy to implement in practice. At present, more and more things will be integrated into one model, leading to the traditional solver cannot meet the application needs. The fast solution method is necessary to be used to solve this problem in the new era.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sowhat完成签到 ,获得积分10
刚刚
5秒前
杪夏二八完成签到 ,获得积分10
14秒前
甜蜜发带完成签到 ,获得积分0
21秒前
25秒前
48秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
14999应助科研通管家采纳,获得10
1分钟前
gavin完成签到 ,获得积分10
1分钟前
老石完成签到 ,获得积分10
1分钟前
Wy21完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
行走发布了新的文献求助10
2分钟前
2分钟前
H_C发布了新的文献求助10
2分钟前
GingerF应助H_C采纳,获得10
3分钟前
光合作用完成签到,获得积分10
3分钟前
3分钟前
3分钟前
恭喜发财完成签到 ,获得积分10
3分钟前
lizhuoran完成签到,获得积分10
3分钟前
八二力完成签到 ,获得积分10
4分钟前
难过的踏歌完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
就知道完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
14999应助科研通管家采纳,获得10
5分钟前
George完成签到,获得积分10
5分钟前
5分钟前
DChen完成签到 ,获得积分10
5分钟前
5分钟前
7777发布了新的文献求助10
5分钟前
传奇3应助恭喜发财采纳,获得10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919953
求助须知:如何正确求助?哪些是违规求助? 3464953
关于积分的说明 10935414
捐赠科研通 3193263
什么是DOI,文献DOI怎么找? 1764548
邀请新用户注册赠送积分活动 854963
科研通“疑难数据库(出版商)”最低求助积分说明 794541