亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sparse Mutual Granularity-Based Feature Selection and its Application of Schizophrenia Patients

特征选择 粒度 计算机科学 相互信息 人工智能 选择(遗传算法) 数据挖掘 程序设计语言
作者
Hengrong Ju,Tao Yin,Jiashuang Huang,Weiping Ding,Xibei Yang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 604-614 被引量:5
标识
DOI:10.1109/tetci.2023.3314548
摘要

K -nearest neighborhood information granularity-based feature selection is derived from the well-known k -nearest neighbor ( k NN) classification technique, which is widely employed in data mining. However, the current k -nearest neighborhood-based information granules cannot effectively handle data with different density distributions. To address this problem, a sparse mutual granularity-based feature selection approach is developed. First, a personalized information granule is constructed based on the optimal k values for each sample. The optimal k value is obtained through the number of correlated samples, where the correlations between the samples are learned by the sparse constraint function. The achieved optimal k can define the size of the granularity-based model and increase the classification accuracy. Second, a mutual-information strategy is introduced in the granularity process. Irrelevant samples in the granularity-based model are removed, which improves the classification performance. Third, an improved heuristic feature selection algorithm is developed to address the nonmonotonic problem. Compared with the classical heuristic method, the proposed feature selection method can improve the performance of the obtained subset and avoid degradation caused by non-monotonicity. The experimental results on the UCI datasets show that the sparse mutual granularity-based feature selection approach is effective for managing data with different density distributions. Finally, the proposed feature selection approach is applied to select significant brain regions in several schizophrenia datasets. It contributes to the prediction of schizophrenia and also provides a new direction for the improvement of medical-image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黯然完成签到 ,获得积分10
1秒前
snowpie完成签到 ,获得积分10
4秒前
852应助Ulrica采纳,获得10
10秒前
我是你爹完成签到,获得积分10
19秒前
ainibb完成签到 ,获得积分10
21秒前
25秒前
Cheny完成签到,获得积分10
27秒前
Ulrica发布了新的文献求助10
30秒前
gttlyb完成签到,获得积分10
35秒前
YifanWang完成签到,获得积分0
37秒前
41秒前
汉堡包应助科研通管家采纳,获得10
43秒前
斯寜应助科研通管家采纳,获得10
43秒前
斯寜应助科研通管家采纳,获得10
43秒前
46秒前
卡卡咧咧发布了新的文献求助10
1分钟前
热情的寄瑶完成签到 ,获得积分10
1分钟前
1分钟前
爱看文献的小恐龙完成签到,获得积分10
1分钟前
皮本皮发布了新的文献求助10
1分钟前
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
科研通AI2S应助Ulrica采纳,获得10
1分钟前
皮本皮完成签到,获得积分10
1分钟前
慕青应助知足的憨人*-*采纳,获得10
1分钟前
科研螺丝完成签到 ,获得积分10
1分钟前
610完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ulrica发布了新的文献求助10
1分钟前
gg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zho发布了新的文献求助10
2分钟前
right完成签到 ,获得积分10
2分钟前
2分钟前
等待的花生完成签到,获得积分10
2分钟前
动漫大师发布了新的文献求助10
2分钟前
gg完成签到,获得积分20
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212647
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667276
邀请新用户注册赠送积分活动 798086
科研通“疑难数据库(出版商)”最低求助积分说明 758215