Lymph node metastases detection in Whole Slide Images using prototypical patterns and transformer-guided multiple instance learning

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 数字化病理学 乳腺癌 深度学习 试验装置 癌症 医学 内科学
作者
Lukas Heinlein,Michaela Benz,Petr Kuritcyn,Volker Bruns,Arndt Hartmann,Felix Keil,Carol Geppert,Katja Evert,Thomas Wittenberg
出处
期刊:Current Directions in Biomedical Engineering [De Gruyter]
卷期号:9 (1): 166-169
标识
DOI:10.1515/cdbme-2023-1042
摘要

Abstract Background: The examination of lymph nodes (LNs) regarding metastases is vital for the staging of cancer patients, which is necessary for diagnosis and adequate treatment selection. Advancements in digital pathology, utilizing Whole-Slide Images (WSIs) and convolutional neural networks (CNNs), pose new opportunities to automate this procedure, thus reducing pathologists’ workload while simultaneously increasing the accuracy in metastases detection. Objective: To address the task of LN-metastases detection, the use of weakly supervised transformers are applied for the analysis of WSIs. Methods & Materials: As WSIs are too large to be processed as a whole, they are divided into non-overlapping patches, which are converted to feature vectors using a CNN network, pre-trained on HE-stained colon cancer resections. A subset of these patches serves as input for a transformer to predict if a LN contains a metastasis. Hence, selecting a representative subset is an important part of the pipeline. Hereby, a prototype based clustering is employed and different sampling strategies are tested. Finally, the chosen feature vectors are fed into a transformer-based multiple instance learning (MIL) architecture, classifying the LNs into healthy/negative (that is, containing no metastases), or metastatic/positive (that is, containing metastases). The proposed model is trained only on the Camelyon16 training data (LNs from breast cancer patients), and evaluated on the Camelyon16 test set. Results: The trained model achieves accuracies of up to 92.3% on the test data (from breast LNs). While the model struggles with smaller metastases, high specificities of up to 96.9% can be accomplished. Additionally, the model is evaluated on LNs from a different primary tumor (colon), where accuracies between 62.3% and 95.9% could be obtained. Conclusion: The investigated transformer-model performs very good on LN data from the public LN breast data, but the domain transfer to LNs from the colon needs more research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰哥完成签到 ,获得积分10
1秒前
ZL完成签到,获得积分10
2秒前
泛舟完成签到,获得积分10
3秒前
世界需要我完成签到,获得积分10
3秒前
3秒前
yinjs158发布了新的文献求助10
4秒前
彭于晏应助白切鸡大王采纳,获得10
4秒前
LHC完成签到,获得积分10
4秒前
木子水告完成签到,获得积分10
4秒前
星辰大海应助hkhkhk采纳,获得30
5秒前
5秒前
wnwn完成签到,获得积分10
5秒前
8秒前
9秒前
wnwn发布了新的文献求助10
9秒前
Akim应助李小刚采纳,获得10
10秒前
英俊的铭应助lhw9311采纳,获得10
11秒前
怡然的飞珍完成签到,获得积分10
12秒前
可爱丸子发布了新的文献求助10
13秒前
13秒前
牟嘉通完成签到,获得积分10
14秒前
14秒前
14秒前
迷人松鼠完成签到 ,获得积分10
15秒前
我是老大应助噜噜晓采纳,获得10
15秒前
雨rain完成签到 ,获得积分10
16秒前
18秒前
19秒前
科研通AI6应助lll采纳,获得20
19秒前
牟嘉通发布了新的文献求助10
19秒前
20秒前
20秒前
赘婿应助B站萧亚轩采纳,获得10
21秒前
传奇3应助福蝶采纳,获得10
21秒前
ding应助栎阳采纳,获得10
23秒前
FashionBoy应助方圆采纳,获得10
23秒前
小莫发布了新的文献求助10
24秒前
不吃大蒜完成签到,获得积分10
25秒前
苗条巧曼发布了新的文献求助10
25秒前
Lucas应助天上掉下篇NCS采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4482469
求助须知:如何正确求助?哪些是违规求助? 3938570
关于积分的说明 12218170
捐赠科研通 3593779
什么是DOI,文献DOI怎么找? 1976337
邀请新用户注册赠送积分活动 1013448
科研通“疑难数据库(出版商)”最低求助积分说明 906625