已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A preference-approval structure-based non-additive three-way group consensus decision-making approach for medical diagnosis

偏爱 排名(信息检索) 计算机科学 粒度 构造(python库) 群体决策 数据挖掘 人工智能 机器学习 情报检索 模糊逻辑 数据科学 数学 统计 心理学 社会心理学 程序设计语言 操作系统
作者
Jin Ye,Bingzhen Sun,Juncheng Bai,Qiang Bao,Xiaoli Chu,Kun Bao
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 102008-102008 被引量:27
标识
DOI:10.1016/j.inffus.2023.102008
摘要

The clinical diagnosis decision-making process of integrated traditional Chinese medicine and Western medicine is essentially a type of group decision-making (GDM) problem, which is transparently characterized by the multiformity of data types and the diversity of knowledge structures among experts. However, most existing GDM methods are designed based on single data types and cannot address GDM problems involving multiple data types and diversified attributes. Moreover, the preference-approval structure provides a simple framework to simulate the preference information regarding an individual’s ranking and approval. But it only considers two categories: approval and disapproval, without accounting for the indecision of individuals. In reality, three-way decision (TWD) is common. Given the deficiencies above, this paper puts forward a novel preference-approval structure-based three-way group consensus decision-making approach for a class of GDM problems with the characteristics of incompleteness, multi-granularity, diversity, and compound. To represent the information in these complex GDM problems, we firstly present the concept of incomplete multi-granularity diversified compound decision systems (IMGDCDSs). Secondly, according to the data characteristics, we construct a non-additive TWD model over the framework of granular computing. On the one hand, using the reference point of each attribute, an acquisition method of relative loss functions is given by considering three kinds of states. On the other hand, we present a new fuzzy measure to calculate non-additive conditional probabilities. The above work enriches the existing TWD theory. Based on the three-way classification and ranking results obtained, this paper subsequently defines a preference-approval structure and establishes a new group consensus decision-making approach. Thereby, the TWD model is integrated into preference-approval structures, which further enriches the GDM theory. More importantly, some existing group consensus methods are special cases of our study. Whereafter, we demonstrate the feasibility of the approach using an illustrative example. Finally, the stability and effectiveness of the approach are verified through an empirical study in the context of medical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蛋疼先生发布了新的文献求助10
1秒前
酒醉的蝴蝶完成签到 ,获得积分10
1秒前
Jenny发布了新的文献求助10
4秒前
SciGPT应助时间地点条件采纳,获得10
5秒前
阔达的秀发完成签到,获得积分10
8秒前
10秒前
哈哈完成签到 ,获得积分10
10秒前
ddrose发布了新的文献求助10
11秒前
科研通AI2S应助蛋疼先生采纳,获得10
12秒前
14秒前
Happy_go_Lucky完成签到 ,获得积分10
14秒前
搜集达人应助阿瓜采纳,获得10
14秒前
Bin_Liu发布了新的文献求助10
15秒前
18秒前
科研通AI5应助Jenny采纳,获得30
18秒前
Vincent发布了新的文献求助10
19秒前
shentaii完成签到,获得积分10
22秒前
23秒前
ddrose发布了新的文献求助10
26秒前
阿瓜发布了新的文献求助10
27秒前
29秒前
太空工程师完成签到,获得积分10
30秒前
33秒前
万能图书馆应助Vincent采纳,获得10
33秒前
深情梦蕊完成签到,获得积分10
33秒前
Splaink完成签到 ,获得积分10
34秒前
Becky完成签到 ,获得积分10
36秒前
木有完成签到 ,获得积分10
38秒前
40秒前
2025alex完成签到,获得积分10
40秒前
ddrose发布了新的文献求助10
40秒前
41秒前
Huay完成签到 ,获得积分10
42秒前
九月发布了新的文献求助10
44秒前
wzh发布了新的文献求助10
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
深情安青应助科研通管家采纳,获得10
47秒前
李健应助ddrose采纳,获得10
48秒前
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800847
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329133
捐赠科研通 3062794
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702