MAGVA: An Open-Set Fault Diagnosis Model Based on Multi-Hop Attentive Graph Variational Autoencoder for Autonomous Vehicles

自编码 计算机科学 人工智能 集合(抽象数据类型) 图形 开放集 生成模型 约束(计算机辅助设计) 模式识别(心理学) 机器学习 生成语法 理论计算机科学 人工神经网络 数学 离散数学 程序设计语言 几何学
作者
Rao Fu,Yuanguo Bi,Guangjie Han,Xiaoling Zhang,Li Liu,Liang Zhao,Bing Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 14873-14889 被引量:1
标识
DOI:10.1109/tits.2023.3300911
摘要

To improve the reliability of autonomous vehicles, open-set fault diagnosis is indispensable to jointly detect known and unknown faults, in which unknown faults only appear in the testing set. However, in learning the representations for open-set diagnosis, the extracted representations lack hierarchy to preserve high-level and genuine representations, and the final representations utilized for diagnosing lack distinctiveness to separate unknowns from knowns. In addition, in the stage of testing, the open-set diagnosis models are error-prone when unknowns are similar to knowns. Motivated by these challenges, we propose a Multi-hop Attentive Graph Variational Autoencoder (MAGVA) model for open-set fault diagnosis in this paper. First, a multi-hop attentive graph convolutional network is developed to adaptively extract hierarchical representations and eliminate unknown fault misidentification. Then, to avoid unknown faults occupying the same region as known faults and identify known faults, structural representation constraints are designed by jointly conducting reconstruction with an intra-class constraint and classification with an inter-class constraint. Finally, combining the distinguishable representations learned by MAGVA, a generative distance-based open-set diagnosis algorithm is proposed, in which the procedures of estimating class-conditional distributions are designed, and a relative generative distance is then presented to derive diagnosis results under the class-conditional distributions. Experiments on three commonly used bearing datasets for vehicles demonstrate that the proposed MAGVA consistently outperforms the compared models in open-set, closed-set, and unknown fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容谷菱完成签到,获得积分10
1秒前
1秒前
刘刘溜完成签到,获得积分10
1秒前
2秒前
2秒前
5秒前
LYB1a吕完成签到,获得积分10
8秒前
8秒前
DT完成签到 ,获得积分10
9秒前
汪汪发布了新的文献求助10
9秒前
orixero应助占臻采纳,获得10
11秒前
柯一一应助nsc采纳,获得10
16秒前
Liufgui应助nsc采纳,获得10
16秒前
领导范儿应助虚影采纳,获得10
17秒前
18秒前
19秒前
小星在努力完成签到,获得积分10
20秒前
LUJyyyy完成签到,获得积分10
20秒前
22秒前
LYB吕完成签到,获得积分10
24秒前
yiersan发布了新的文献求助10
24秒前
24秒前
25秒前
松鼠非鼠完成签到 ,获得积分10
26秒前
26秒前
shiqi1108完成签到 ,获得积分10
26秒前
阳光夏烟发布了新的文献求助10
27秒前
峰1992发布了新的文献求助10
28秒前
所所应助汪汪采纳,获得10
28秒前
ming发布了新的文献求助10
30秒前
32秒前
32秒前
32秒前
快让我滚蛋毕业完成签到,获得积分10
32秒前
33秒前
33秒前
Lyl发布了新的文献求助10
35秒前
36秒前
FashionBoy应助qianlu采纳,获得10
36秒前
kk关注了科研通微信公众号
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965102
求助须知:如何正确求助?哪些是违规求助? 3510413
关于积分的说明 11153181
捐赠科研通 3244755
什么是DOI,文献DOI怎么找? 1792578
邀请新用户注册赠送积分活动 873923
科研通“疑难数据库(出版商)”最低求助积分说明 804024