MAGVA: An Open-Set Fault Diagnosis Model Based on Multi-Hop Attentive Graph Variational Autoencoder for Autonomous Vehicles

自编码 计算机科学 人工智能 集合(抽象数据类型) 图形 开放集 生成模型 约束(计算机辅助设计) 模式识别(心理学) 机器学习 生成语法 理论计算机科学 人工神经网络 数学 几何学 离散数学 程序设计语言
作者
Rao Fu,Yuanguo Bi,Guangjie Han,Xiaoling Zhang,Li Liu,Liang Zhao,Bing Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 14873-14889 被引量:1
标识
DOI:10.1109/tits.2023.3300911
摘要

To improve the reliability of autonomous vehicles, open-set fault diagnosis is indispensable to jointly detect known and unknown faults, in which unknown faults only appear in the testing set. However, in learning the representations for open-set diagnosis, the extracted representations lack hierarchy to preserve high-level and genuine representations, and the final representations utilized for diagnosing lack distinctiveness to separate unknowns from knowns. In addition, in the stage of testing, the open-set diagnosis models are error-prone when unknowns are similar to knowns. Motivated by these challenges, we propose a Multi-hop Attentive Graph Variational Autoencoder (MAGVA) model for open-set fault diagnosis in this paper. First, a multi-hop attentive graph convolutional network is developed to adaptively extract hierarchical representations and eliminate unknown fault misidentification. Then, to avoid unknown faults occupying the same region as known faults and identify known faults, structural representation constraints are designed by jointly conducting reconstruction with an intra-class constraint and classification with an inter-class constraint. Finally, combining the distinguishable representations learned by MAGVA, a generative distance-based open-set diagnosis algorithm is proposed, in which the procedures of estimating class-conditional distributions are designed, and a relative generative distance is then presented to derive diagnosis results under the class-conditional distributions. Experiments on three commonly used bearing datasets for vehicles demonstrate that the proposed MAGVA consistently outperforms the compared models in open-set, closed-set, and unknown fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兔子发布了新的文献求助10
1秒前
hq完成签到 ,获得积分10
2秒前
3秒前
别喝他的酒完成签到,获得积分10
4秒前
miaomiao完成签到,获得积分10
6秒前
龙龙ff11_完成签到,获得积分10
6秒前
prof.zhang完成签到,获得积分10
6秒前
7秒前
小兔子完成签到,获得积分10
9秒前
花花猪1989完成签到 ,获得积分10
11秒前
莹崽无敌完成签到 ,获得积分10
13秒前
14秒前
18秒前
20秒前
海豚完成签到,获得积分10
20秒前
22秒前
海豚发布了新的文献求助10
25秒前
优美的梦菲完成签到,获得积分20
26秒前
27秒前
热情的水杯完成签到,获得积分10
30秒前
30秒前
狮子沟核聚变骡子完成签到 ,获得积分10
30秒前
幽默果汁完成签到 ,获得积分10
31秒前
32秒前
HEIKU应助科研通管家采纳,获得10
32秒前
贰鸟应助科研通管家采纳,获得20
32秒前
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
大个应助slj采纳,获得10
33秒前
33秒前
英姑应助科研通管家采纳,获得30
33秒前
33秒前
33秒前
34秒前
怡然冰之完成签到 ,获得积分10
35秒前
SciGPT应助落后志泽采纳,获得10
35秒前
kudoukoumei发布了新的文献求助10
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648