亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media

计算机科学 卷积神经网络 人工智能 构造(python库) 集成学习 深度学习 代表(政治) 机器学习 自然语言处理 政治 政治学 法学 程序设计语言
作者
Esshaan Mahajan,Hema Mahajan,Sanjay Kumar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121228-121228
标识
DOI:10.1016/j.eswa.2023.121228
摘要

Nowadays, users across the globe interact with one another for information exchange, communication, and association on various online social media. However, some individuals exploit these venues for malicious practices like hate speech and cyberbully. In this paper, we present an improved multilingual hate speech and cyberbully detection model using bagging-stacking based hybrid ensemble deep learning techniques. The proposed model utilizes Bi-directional Long Short-Term Memory (BiLSTM), Bi-directional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) techniques to enhance the overall performance. We first preprocess the multilingual data streams followed by adoption of Global vectors for word Representation (GloVe) embeddings to convert words to a vector representation in parallel enabling the data streams for binary classification task. In order to construct an architecture for the detection of hate speech and cyberbully, we introduce a heterogeneous fusion of multiple effective models in a unique approach such that CNN-LSTM utilizes a stacking approach with stochastic gradient descent to achieve optimal weights, whereas all the base learners used bagging ensemble approach with cross-validation to reach optimal weights. The final output layer of the proposed ensemble deep learning architecture is achieved using a super learner approach on base learners. To show the efficacy of the proposed model, we conduct the simulation on a total of nine real-world social media datasets in different languages and compared the results with other contemporary hate speech and cyberbully detection methods. The collected findings show that the proposed model outperforms other models on considered datasets and shows an improvement of at least 4.44% in F1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DannyNickolov完成签到,获得积分20
28秒前
53秒前
drgaoying发布了新的文献求助10
56秒前
drgaoying完成签到,获得积分10
1分钟前
1分钟前
El发布了新的文献求助10
1分钟前
菜菜完成签到,获得积分20
1分钟前
1分钟前
番茄超级淡完成签到,获得积分10
2分钟前
2分钟前
polaris完成签到,获得积分10
2分钟前
科研通AI5应助polaris采纳,获得30
2分钟前
norberta发布了新的文献求助10
2分钟前
2分钟前
Sunny发布了新的文献求助10
2分钟前
3分钟前
科研通AI5应助starbinbin采纳,获得50
3分钟前
3分钟前
starbinbin发布了新的文献求助50
3分钟前
Virtual应助科研通管家采纳,获得10
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
四天垂完成签到 ,获得积分10
5分钟前
6分钟前
Virtual应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
方沅完成签到,获得积分10
6分钟前
6分钟前
7分钟前
123456777完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
爱思考的小笨笨完成签到,获得积分10
7分钟前
oleskarabach发布了新的文献求助10
9分钟前
桥西小河完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4498844
求助须知:如何正确求助?哪些是违规求助? 3949822
关于积分的说明 12244895
捐赠科研通 3608356
什么是DOI,文献DOI怎么找? 1984872
邀请新用户注册赠送积分活动 1021331
科研通“疑难数据库(出版商)”最低求助积分说明 913754