亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating deep convolutional neural network on FPGA for ECG signal classification

计算机科学 卷积神经网络 现场可编程门阵列 人工智能 模式识别(心理学) 深度学习 特征提取 特征(语言学) 信号(编程语言) 过程(计算) 联营 领域(数学) 离散小波变换 人工神经网络 小波 小波变换 计算机硬件 操作系统 哲学 语言学 数学 程序设计语言 纯数学
作者
V B K L Aruna,E. Chitra,M. Padmaja
出处
期刊:Microprocessors and Microsystems [Elsevier BV]
卷期号:103: 104939-104939 被引量:7
标识
DOI:10.1016/j.micpro.2023.104939
摘要

Abnormal activity of the heart is known as cardiac arrhythmia which must be recognized in earlier stage to prevent sudden death and premature death. The occurrence of arrhythmia increases with age, and it is detected using an electrocardiogram (ECG) signal. Conversely, it is very complex to manually achieve the quick and exact classification due to the complexity, non-linearity and low amplitude of the ECG signal. As a result, the healthcare field requires an automatic system to recognize abnormal heartbeats from a huge amount of ECG records. So, the deep learning algorithm named as Deep Convolutional Neural Network (DCNN) is proposed in this research to analyze the ECG signal on a field-programmable gate array (FPGA). Before performing a classification process, two different processes called signal pre-processing as well as feature extraction are required. For the process of signal pre-processing, the Error Normalised Least Mean Square (ENLMS) algorithm is utilized in our work, and Discrete Wavelet Transform (DWT) technique is performed to take out the relevant features from the ECG signal. Finally, FPGA based one-dimensional DCNN with 3 convolutional layers, 3 pooling layers, and 3 fully connected layers is proposed to classify the signals with proper complex features. The publicly available MIT-BIH arrhythmia and PTB databases are exploited in this research to process ECG signals on the multi-input structure. In addition, different performance parameters like classification accuracy, specificity, sensitivity, and precision are engaged to evaluate the proposed methodology; also, it is compared with different FPGA based existing classifiers. The analysis shows that the proposed design accomplishes 98.6 % classification accuracy on the MIT-BIH arrhythmia database and 99.67 % accuracy on the PTB database, which is 0.304 % higher than a multilayer perception (MLP) and 0.47 % higher than decision-based classifier. Moreover, the proposed FPGA based DCNN accelerator consumes 0.45 mW, 185.426 MHz operation frequency and takes 15 s to complete the classification process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
16秒前
32秒前
MchemG应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
MchemG应助科研通管家采纳,获得10
36秒前
MchemG应助科研通管家采纳,获得10
36秒前
MchemG应助科研通管家采纳,获得10
36秒前
量子星尘发布了新的文献求助10
42秒前
Anyemzl完成签到,获得积分10
44秒前
zsmj23完成签到 ,获得积分0
55秒前
Diamond完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
任性大米发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
顺利的小蚂蚁完成签到,获得积分10
3分钟前
无言完成签到,获得积分10
3分钟前
3分钟前
2953685951发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881614
求助须知:如何正确求助?哪些是违规求助? 3424001
关于积分的说明 10736818
捐赠科研通 3148878
什么是DOI,文献DOI怎么找? 1737685
邀请新用户注册赠送积分活动 838890
科研通“疑难数据库(出版商)”最低求助积分说明 784138