VisionFM: a Multi-Modal Multi-Task Vision Foundation Model for Generalist Ophthalmic Artificial Intelligence

人工智能 计算机科学 机器学习 水准点(测量) 医学影像学 概化理论 深度学习 心理学 发展心理学 大地测量学 地理
作者
Jianing Qiu,Jian Wu,Hao Wei,Peilun Shi,Minqing Zhang,Yunyun Sun,Lin Li,Hanruo Liu,Hongyi Liu,Simeng Hou,Yuyang Zhao,Xue‐Hui Shi,Junfang Xian,Xiaoxia Qu,Sirui Zhu,Lijie Pan,Xiaoniao Chen,Xiaojia Zhang,Shuai Jiang,Kebing Wang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2310.04992
摘要

We present VisionFM, a foundation model pre-trained with 3.4 million ophthalmic images from 560,457 individuals, covering a broad range of ophthalmic diseases, modalities, imaging devices, and demography. After pre-training, VisionFM provides a foundation to foster multiple ophthalmic artificial intelligence (AI) applications, such as disease screening and diagnosis, disease prognosis, subclassification of disease phenotype, and systemic biomarker and disease prediction, with each application enhanced with expert-level intelligence and accuracy. The generalist intelligence of VisionFM outperformed ophthalmologists with basic and intermediate levels in jointly diagnosing 12 common ophthalmic diseases. Evaluated on a new large-scale ophthalmic disease diagnosis benchmark database, as well as a new large-scale segmentation and detection benchmark database, VisionFM outperformed strong baseline deep neural networks. The ophthalmic image representations learned by VisionFM exhibited noteworthy explainability, and demonstrated strong generalizability to new ophthalmic modalities, disease spectrum, and imaging devices. As a foundation model, VisionFM has a large capacity to learn from diverse ophthalmic imaging data and disparate datasets. To be commensurate with this capacity, in addition to the real data used for pre-training, we also generated and leveraged synthetic ophthalmic imaging data. Experimental results revealed that synthetic data that passed visual Turing tests, can also enhance the representation learning capability of VisionFM, leading to substantial performance gains on downstream ophthalmic AI tasks. Beyond the ophthalmic AI applications developed, validated, and demonstrated in this work, substantial further applications can be achieved in an efficient and cost-effective manner using VisionFM as the foundation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
threewei完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
清欢完成签到 ,获得积分10
2秒前
3秒前
xixun关注了科研通微信公众号
3秒前
4秒前
4秒前
解语花发布了新的文献求助50
5秒前
啊啊啊完成签到,获得积分10
6秒前
小琛完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
10秒前
10秒前
36038138完成签到 ,获得积分10
12秒前
XRenaissance发布了新的文献求助10
13秒前
搬砖发布了新的文献求助10
14秒前
14秒前
酱紫完成签到 ,获得积分10
14秒前
淡定妙海发布了新的文献求助10
14秒前
NexusExplorer应助盖世汤圆采纳,获得20
15秒前
15秒前
Azyyyy完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助30
16秒前
16秒前
陈昇发布了新的文献求助10
16秒前
cccf发布了新的文献求助100
17秒前
18秒前
冯俊驰发布了新的文献求助10
19秒前
海马成长痛完成签到,获得积分10
19秒前
丘比特应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
wswswsws应助科研通管家采纳,获得30
22秒前
浮游应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408