VisionFM: a Multi-Modal Multi-Task Vision Foundation Model for Generalist Ophthalmic Artificial Intelligence

人工智能 计算机科学 机器学习 水准点(测量) 医学影像学 概化理论 深度学习 心理学 发展心理学 大地测量学 地理
作者
Jianing Qiu,Jian Wu,Hao Wei,Peilun Shi,Minqing Zhang,Yunyun Sun,Lin Li,Hanruo Liu,Hongyi Liu,Simeng Hou,Yuyang Zhao,Xue‐Hui Shi,Junfang Xian,Xiaoxia Qu,Sirui Zhu,Lijie Pan,Xiaoniao Chen,Xiaojia Zhang,Shuai Jiang,Kebing Wang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2310.04992
摘要

We present VisionFM, a foundation model pre-trained with 3.4 million ophthalmic images from 560,457 individuals, covering a broad range of ophthalmic diseases, modalities, imaging devices, and demography. After pre-training, VisionFM provides a foundation to foster multiple ophthalmic artificial intelligence (AI) applications, such as disease screening and diagnosis, disease prognosis, subclassification of disease phenotype, and systemic biomarker and disease prediction, with each application enhanced with expert-level intelligence and accuracy. The generalist intelligence of VisionFM outperformed ophthalmologists with basic and intermediate levels in jointly diagnosing 12 common ophthalmic diseases. Evaluated on a new large-scale ophthalmic disease diagnosis benchmark database, as well as a new large-scale segmentation and detection benchmark database, VisionFM outperformed strong baseline deep neural networks. The ophthalmic image representations learned by VisionFM exhibited noteworthy explainability, and demonstrated strong generalizability to new ophthalmic modalities, disease spectrum, and imaging devices. As a foundation model, VisionFM has a large capacity to learn from diverse ophthalmic imaging data and disparate datasets. To be commensurate with this capacity, in addition to the real data used for pre-training, we also generated and leveraged synthetic ophthalmic imaging data. Experimental results revealed that synthetic data that passed visual Turing tests, can also enhance the representation learning capability of VisionFM, leading to substantial performance gains on downstream ophthalmic AI tasks. Beyond the ophthalmic AI applications developed, validated, and demonstrated in this work, substantial further applications can be achieved in an efficient and cost-effective manner using VisionFM as the foundation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqy完成签到 ,获得积分10
刚刚
卡他完成签到,获得积分10
3秒前
框郑完成签到 ,获得积分10
3秒前
2025顺顺利利完成签到 ,获得积分10
4秒前
5秒前
5秒前
科研小裴完成签到 ,获得积分10
6秒前
Qiuyajing完成签到,获得积分10
8秒前
手抓饼啊发布了新的文献求助10
9秒前
10秒前
Leo发布了新的文献求助10
12秒前
月亮在o完成签到 ,获得积分10
14秒前
湛刘佳完成签到 ,获得积分10
14秒前
昭谏发布了新的文献求助10
16秒前
unflycn完成签到,获得积分10
19秒前
23秒前
温婉的凝丹完成签到 ,获得积分10
25秒前
blue-鱼完成签到,获得积分10
29秒前
orixero应助tangz采纳,获得10
30秒前
31秒前
Suc发布了新的文献求助10
31秒前
手抓饼啊完成签到,获得积分10
31秒前
烟花应助Lin采纳,获得10
33秒前
cbq完成签到 ,获得积分10
34秒前
海猫食堂完成签到,获得积分10
35秒前
fffff发布了新的文献求助10
36秒前
所所应助鱼在哪儿采纳,获得10
37秒前
40秒前
科研通AI2S应助好好采纳,获得10
41秒前
42秒前
步步完成签到 ,获得积分10
43秒前
爱学习的瑞瑞子完成签到 ,获得积分10
43秒前
领导范儿应助乘风破浪采纳,获得10
44秒前
xie发布了新的文献求助10
44秒前
kk发布了新的文献求助10
47秒前
dream发布了新的文献求助10
48秒前
49秒前
49秒前
情怀应助車侖采纳,获得10
51秒前
复杂的方盒完成签到 ,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779606
求助须知:如何正确求助?哪些是违规求助? 3325116
关于积分的说明 10221269
捐赠科研通 3040209
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535