错义突变
移码突变
无义突变
医学
西方综合征
遗传学
突变
生物
癫痫
基因
精神科
作者
Hirotomo Saitsu,Mitsuhiro Kato,Ippei Okada,Kenji E. Orii,Tsukasa Higuchi,Hideki Hoshino,Masaya Kubota,Hiroshi Arai,Tetsuzo Tagawa,Shigeru Kimura,Akira Sudo,Sahoko Miyama,Yuichi Takami,Toshihide Watanabe,Akira Nishimura,Kiyomi Nishiyama,Noriko Miyake,Takahito Wada,Hitoshi Osaka,Naomi Kondo
出处
期刊:Epilepsia
[Wiley]
日期:2010-09-30
卷期号:51 (12): 2397-2405
被引量:147
标识
DOI:10.1111/j.1528-1167.2010.02728.x
摘要
Summary Purpose: De novo STXBP1 mutations have been found in individuals with early infantile epileptic encephalopathy with suppression‐burst pattern (EIEE). Our aim was to delineate the clinical spectrum of subjects with STXBP1 mutations, and to examine their biologic aspects. Methods: STXBP1 was analyzed in 29 and 54 cases of cryptogenic EIEE and West syndrome, respectively, as a second cohort. RNA splicing was analyzed in lymphoblastoid cells from a subject harboring a c.663 + 5G>A mutation. Expression of STXBP1 protein with missense mutations was examined in neuroblastoma2A cells. Results: A total of seven novel STXBP1 mutations were found in nine EIEE cases, but not in West syndrome. The mutations include two frameshift mutations, three nonsense mutations, a splicing mutation, and a recurrent missense mutation in three unrelated cases. Including our previous data, 10 of 14 individuals (71%) with STXBP1 aberrations had the onset of spasms after 1 month, suggesting relatively later onset of epileptic spasms. Nonsense‐mediated mRNA decay associated with abnormal splicing was demonstrated. Transient expression revealed that STXBP1 proteins with missense mutations resulted in degradation in neuroblastoma2A cells. Discussion: Collectively, STXBP1 aberrations can account for about one‐third individuals with EIEE (14 of 43). These genetic and biologic data clearly showed that haploinsufficiency of STXBP1 is the important cause for cryptogenic EIEE.
科研通智能强力驱动
Strongly Powered by AbleSci AI