Efficient Transformer for Single Image Super-Resolution

计算机科学 变压器 人工智能 深度学习 计算机工程 电气工程 电压 工程类
作者
Zhisheng Lu,Hong Liu,Juncheng Li,Linlin Zhang
出处
期刊:Cornell University - arXiv 被引量:28
摘要

Single image super-resolution task has witnessed great strides with the development of deep learning. However, most existing studies focus on building a more complex neural network with a massive number of layers, bringing heavy computational cost and memory storage. Recently, as Transformer yields brilliant results in NLP tasks, more and more researchers start to explore the application of Transformer in computer vision tasks. But with the heavy computational cost and high GPU memory occupation of the vision Transformer, the network can not be designed too deep. To address this problem, we propose a novel Efficient Super-Resolution Transformer (ESRT) for fast and accurate image super-resolution. ESRT is a hybrid Transformer where a CNN-based SR network is first designed in the front to extract deep features. Specifically, there are two backbones for formatting the ESRT: lightweight CNN backbone (LCB) and lightweight Transformer backbone (LTB). Among them, LCB is a lightweight SR network to extract deep SR features at a low computational cost by dynamically adjusting the size of the feature map. LTB is made up of an efficient Transformer (ET) with a small GPU memory occupation, which benefited from the novel efficient multi-head attention (EMHA). In EMHA, a feature split module (FSM) is proposed to split the long sequence into sub-segments and then these sub-segments are applied by attention operation. This module can significantly decrease the GPU memory occupation. Extensive experiments show that our ESRT achieves competitive results. Compared with the original Transformer which occupies 16057M GPU memory, the proposed ET only occupies 4191M GPU memory with better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZH完成签到,获得积分10
1秒前
1秒前
2秒前
cdd完成签到,获得积分10
2秒前
HR112完成签到 ,获得积分10
4秒前
欢喜板凳完成签到 ,获得积分10
5秒前
眼睛大樱桃完成签到 ,获得积分10
5秒前
SL发布了新的文献求助10
6秒前
Hua完成签到,获得积分10
6秒前
刚子完成签到 ,获得积分10
8秒前
SC完成签到 ,获得积分10
10秒前
星辰完成签到 ,获得积分10
10秒前
安静的忆山完成签到 ,获得积分10
11秒前
tomorrow完成签到 ,获得积分10
11秒前
墨墨完成签到 ,获得积分10
13秒前
Vivian完成签到 ,获得积分10
14秒前
614521完成签到,获得积分10
14秒前
MLJ完成签到 ,获得积分10
17秒前
17秒前
lucy完成签到,获得积分10
18秒前
领导范儿应助lxlcx采纳,获得10
18秒前
bing完成签到,获得积分10
19秒前
多多发SCI发布了新的文献求助10
20秒前
nianshu完成签到 ,获得积分10
21秒前
tianshanfeihe完成签到 ,获得积分10
22秒前
薄荷小新完成签到 ,获得积分10
22秒前
25秒前
多多发SCI完成签到,获得积分10
28秒前
Lianna完成签到,获得积分10
30秒前
厚朴大师完成签到,获得积分10
30秒前
巴拉巴拉发布了新的文献求助10
30秒前
平凡世界完成签到 ,获得积分10
37秒前
wintel完成签到,获得积分10
37秒前
shin0324完成签到,获得积分10
40秒前
cdercder应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
笨笨梦松应助科研通管家采纳,获得10
43秒前
43秒前
忆韶完成签到,获得积分10
43秒前
FashionBoy应助巴拉巴拉采纳,获得10
45秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402490
捐赠科研通 3077249
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743