Hybrid Trajectory and Force Learning of Complex Assembly Tasks: A Combined Learning Framework

强化学习 弹道 计算机科学 机器人 人工智能 控制器(灌溉) 任务(项目管理) 模仿 机器人学习 机器学习 移动机器人 工程类 生物 社会心理学 物理 心理学 系统工程 农学 天文
作者
Yan Wang,Cristian C. Beltran-Hernandez,Weiwei Wan,Kensuke Harada
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 60175-60186 被引量:22
标识
DOI:10.1109/access.2021.3073711
摘要

Complex assembly tasks involve nonlinear and low-clearance insertion trajectories with varying contact forces at different stages. For a robot to solve these tasks, it requires a precise and adaptive controller which conventional force control methods cannot provide. Imitation learning is a promising method for learning controllers that can solve the nonlinear trajectories from human demonstrations without needing to explicitly program them into the robot. However, the force profiles obtain from human demonstration via tele-operation tend to be sub-optimal for complex assembly tasks, thus it is undesirable to imitate such force profiles. Reinforcement learning learns adaptive control policies through interactions with the environment but struggles with low sample efficiency and equipment tear and wear in the physical world. To address these problems, we present a combined learning-based framework to solve complex robotic assembly tasks from human demonstrations via hybrid trajectory learning and force learning. The main contribution of this work is the development of a framework that combines imitation learning, to learn the nominal motion trajectory, with a reinforcement learning-based force control scheme to learn an optimal force control policy, which can satisfy the nominal trajectory while adapting to the force requirement of the assembly task. To further improve the imitation learning part, we develop a hierarchical architecture, following the idea of goal-conditioned imitation learning, to generate the trajectory learning policy on the skill level offline. Through experimental validations, we corroborate that the proposed learning-based framework can generate high-quality trajectories and find suitable force control policies which adapt to the tasks' force requirements more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助言小采纳,获得20
刚刚
nanan完成签到,获得积分10
1秒前
Lingyu完成签到 ,获得积分10
2秒前
槿落完成签到,获得积分10
2秒前
英俊的铭应助深情的士萧采纳,获得30
2秒前
阿拉哈哈笑完成签到,获得积分10
3秒前
桐桐应助王子采纳,获得10
4秒前
健忘的黑猫完成签到,获得积分20
6秒前
7秒前
iY发布了新的文献求助10
9秒前
gui发布了新的文献求助10
10秒前
斯文败类应助wooooo采纳,获得10
10秒前
青阳完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
我爱科研完成签到,获得积分20
15秒前
16秒前
18秒前
18秒前
FashionBoy应助时光采纳,获得10
19秒前
AAA完成签到,获得积分10
20秒前
21秒前
haoliu发布了新的文献求助10
21秒前
王子发布了新的文献求助10
24秒前
24秒前
无敌小霸王完成签到,获得积分10
24秒前
我爱科研发布了新的文献求助10
26秒前
XIXIw发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
29秒前
酷波er应助小鞠采纳,获得10
29秒前
kk发布了新的文献求助30
31秒前
李健的小迷弟应助卜婉君采纳,获得10
32秒前
38秒前
无聊科研应助西出阳关采纳,获得10
38秒前
msk完成签到 ,获得积分10
40秒前
Owen应助彭佳乐采纳,获得10
40秒前
小鞠发布了新的文献求助10
43秒前
科研通AI2S应助Pises采纳,获得10
43秒前
Honey发布了新的文献求助20
45秒前
46秒前
46秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867092
求助须知:如何正确求助?哪些是违规求助? 3409334
关于积分的说明 10663193
捐赠科研通 3133480
什么是DOI,文献DOI怎么找? 1728248
邀请新用户注册赠送积分活动 832848
科研通“疑难数据库(出版商)”最低求助积分说明 780510