Mitochondrial compartmentalization: emerging themes in structure and function

分区(防火) 生物 线粒体 细胞生物学 功能(生物学) 计算生物学 进化生物学 生物化学
作者
Joseph C. Iovine,Steven M. Claypool,Nathan N. Alder
出处
期刊:Trends in Biochemical Sciences [Elsevier BV]
卷期号:46 (11): 902-917 被引量:45
标识
DOI:10.1016/j.tibs.2021.06.003
摘要

Mitochondria contain two membranes that partition the organelles into compositionally and functionally distinct subcompartments that are defined by a topologically complex ultrastructure. In addition to their morphological complexity, mitochondria are pleomorphic, undergoing morphogenesis events with an extent and frequency that is only now becoming fully appreciated. The protein complexes that define inner membrane morphology form an interactive network with lipid interactions, and new insights are illuminating how they establish and regulate compartmentalization. The general determinants of compartmentalization, as well as the factors that govern protein and lipid distribution, have recently been identified. Novel research on the functional relevance of compartmentalization has highlighted a key role of regulated cristae subcompartment structure in bioenergetics and in human diseases. Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases. Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases. crescent-shaped domain that interacts with curved membrane surfaces to both promote and detect local membrane curvatures, named after the BIN/Amphiphysin/Rvs proteins in which they are found. attribute of a semipermeable barrier that allows the selective flux of ions down their electrochemical gradients, typically energetically coupled to another process. difference in proton electrochemical potential (Δμ~H+). The potential across the CM of actively respiring mitochondria has a major contribution from the electric potential (ΔΨm ~150 mV, matrix negative) and a minor contribution from the proton concentration difference (ΔpH ~1 unit, matrix alkaline). ABC transporters that utilize the energy provided by ATP hydrolysis to move specific phospholipids against their gradient from the outer to the inner leaflet (flippase) or from the inner to the outer leaflet (floppase). Together, they help generate lipid asymmetry in membranes. a network of physically interacting molecules defining a specific biochemical function or process. controlled process of cell death initiated by proapoptotic effectors (e.g., Bax/Bak) that interact with mitochondria to release factors (e.g., cyt c) that propagate a proteolytic cascade. regions of close apposition between two membranes, generally comprising interacting protein complexes, that facilitate signaling and the passage of small molecules. Such sites can be interorganellar, mediating connections that are homotypic (between the same organelles) or heterotypic (between different organelles). They can also exist between membranes of a single organelle. physical bending of a biomembrane to produce positively (convex) and negatively (concave) curved surfaces. displaying plasticity in structure and size. Ca2+-dependent transporters that equilibrate phospholipids between membrane leaflets. Unlike flippases and floppases, scramblases do not need an external energy source to transport lipids. protein family named after primary members (stomatin, prohibitin, flotillin, and HflK/C), which commonly associate on membranes to form lipid raft microdomains that recruit specific protein complexes. assembly of the respiratory complexes (CI, CIII, and CIV) into supramolecular structures. This solid-state arrangement likely enhances metabolic efficiency compared with a fluid-state model in which individual complexes are connected by freely diffusing electron carriers. the structure of cellular or subcellular objects that requires higher magnification than standard optical microscopy, typically observable by EM or super-resolution microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
柯一一应助科研通管家采纳,获得10
2秒前
大个应助暖羊羊Y采纳,获得30
3秒前
czj完成签到 ,获得积分10
4秒前
田様应助朴实的绿兰采纳,获得10
4秒前
老衲完成签到,获得积分10
4秒前
xx_2000完成签到,获得积分10
5秒前
白小白发布了新的文献求助10
5秒前
菜菜发布了新的文献求助10
6秒前
Kikisong完成签到,获得积分10
8秒前
9秒前
慕青应助潇洒的千山采纳,获得10
10秒前
CAOHOU应助夏艳平采纳,获得10
11秒前
11秒前
12秒前
12秒前
heth完成签到,获得积分20
12秒前
14秒前
aaaaaa发布了新的文献求助10
15秒前
脑洞疼应助cuiyx11采纳,获得10
17秒前
陈俊彰发布了新的文献求助10
18秒前
666发布了新的文献求助10
19秒前
佛系完成签到 ,获得积分10
20秒前
米里迷路完成签到 ,获得积分10
23秒前
英俊的铭应助白小白采纳,获得10
27秒前
28秒前
29秒前
sunny完成签到 ,获得积分10
31秒前
绅度发布了新的文献求助10
31秒前
33秒前
岩岩岩完成签到,获得积分10
33秒前
33秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907805
求助须知:如何正确求助?哪些是违规求助? 3453665
关于积分的说明 10876413
捐赠科研通 3179681
什么是DOI,文献DOI怎么找? 1756582
邀请新用户注册赠送积分活动 849630
科研通“疑难数据库(出版商)”最低求助积分说明 791667