纳米棒
拉曼光谱
化学
剂量计
下降(电信)
电导
纳米技术
剂量学
分析化学(期刊)
化学工程
材料科学
环境化学
计算机科学
电信
医学
组合数学
光学
物理
放射科
工程类
数学
作者
Sebastian Werner,Clarissa Glaser,Thomas Kasper,Trung Nghia Nguyên Lê,Silvia Gross,Bernd Smarsly
标识
DOI:10.1002/chem.202103437
摘要
The precise detection of the toxic gas H2 S requires reliable sensitivity and specificity of sensors even at minute concentrations of as low as 10 ppm, the value corresponding to typical exposure limits. CuO can be used for H2 S dosimetry, based on the formation of conductive CuS and the concomitant significant increase in conductance. In theory, at elevated temperature the reaction is reversed and CuO is formed, ideally enabling repeated and long-term use of one sensor. Yet, the performance of CuO tends to drop upon cycling. Utilizing defined CuO nanorods we thoroughly elucidated the associated detrimental chemical changes directly on the sensors, by Raman and electron microscopy analysis of each step during sensing (CuO→CuS) and regeneration (CuS→CuO) cycles. We find the decrease in the sensing performance is mainly caused by the irreversible formation of CuSO4 during regeneration. The findings allowed us to develop strategies to reduce CuSO4 formation and thus to substantially maintain the sensing stability even for repeated cycles. We achieved CuO-based dosimeters possessing a response time of a few minutes only, even for 10 ppm H2 S, and prolonged life-time.
科研通智能强力驱动
Strongly Powered by AbleSci AI