A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte

锂(药物) 络腮胡子 胡须 材料科学 电解质 沉积(地质) 锂电池 复合材料 化学工程 化学 电极 离子键合 地质学 内分泌学 有机化学 古生物学 物理化学 离子 工程类 医学 沉积物
作者
Jun‐ichi Yamaki,Shin‐ichi Tobishima,Katsuro Hayashi,Keiichi Saito,Yasue Nemoto,Masayasu Arakawa
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:74 (2): 219-227 被引量:454
标识
DOI:10.1016/s0378-7753(98)00067-6
摘要

Lithium rechargeable cells with lithium metal anodes are widely considered to have the highest energy density among comparable cells. However the life cycle and thermal stability of these cells must be improved. The poor performance of lithium metal cells is mainly explained by lithium dendrite growth. With a view to overcoming this problem, we considered the lithium deposition mechanism. We have been carrying out various experiments on the lithium deposition behavior. In this paper we used these results to propose the current and most likely lithium deposition mechanism. We suggest that lithium dendrites may be called whiskers because their shape satisfies the definition of whiskers as `fibrous crystals'. Their tip morphology remains unchanged during their growth, which means they grow from the base in the same way as whiskers of tin from thin films under stress. Lithium deposited under a protective film will experience stress because the deposition is non-uniform. The protective film will break in order to release this stress thus, lithium whiskers may then grow in the form of extrusions. To support our assumption, we calculated the possible morphology of the lithium with the boundary condition that pressure induced by the surface tension is the same throughout the lithium surface. The calculation indicated three types of shape depending on the value of the surface tension and internal pressure. If lithium deformation is limited by the creep strength of bulk lithium and the lithium whiskers, the whisker growth is described by the calculated shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
立军发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
sophia完成签到 ,获得积分10
8秒前
8秒前
8秒前
FashionBoy应助快来吃甜瓜采纳,获得10
9秒前
hdisyd完成签到,获得积分10
9秒前
9秒前
田様应助Kun采纳,获得10
9秒前
jenningseastera应助Kun采纳,获得10
9秒前
10秒前
hdisyd发布了新的文献求助10
12秒前
yu发布了新的文献求助10
14秒前
14秒前
科研通AI5应助chendi20082009采纳,获得10
15秒前
17秒前
深情安青应助chen采纳,获得10
18秒前
19秒前
fduqyy发布了新的文献求助10
23秒前
yu完成签到,获得积分10
27秒前
27秒前
28秒前
30秒前
悦耳的海燕完成签到 ,获得积分10
31秒前
31秒前
33秒前
落后紫夏完成签到,获得积分10
34秒前
35秒前
chen发布了新的文献求助10
35秒前
38秒前
39秒前
41秒前
42秒前
Ava应助chen采纳,获得10
45秒前
LVVVB完成签到,获得积分10
46秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224182
捐赠科研通 3040851
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649