亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the diagnosis of endometrial cancer in postmenopausal women in primary care settings using an artificial intelligence-based ultrasound detecting model

医学 子宫内膜癌 绝经后妇女 超声波 初级保健 癌症 妇科 医学物理学 产科 放射科 内科学 家庭医学
作者
Nan Wang,Ruoxi Zhang,Ling Dong,Ganjun Zhang,Shu Meng
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fonc.2025.1646826
摘要

Objectives We aimed to develop a deep learning (DL) model based on ultrasound examination to assist in ultrasound-based assessment of confirmed endometrial cancer (EC) in postmenopausal women, with the goal of improving diagnostic efficiency for EC in primary care settings. Methods A novel DL system was developed to analyze comprehensive gynecological ultrasound images, specifically targeting the identification of EC based on ultrasound features, using the diagnosis made by ultrasound specialists as the reference standard. Ultrasound measurements were performed to assess endometrial thickness and tumor homogeneity in all patients using gray-scale sonography. Intertumoral blood flow characteristics were analyzed through the blood flow area (BFA), resistance index (RI), end-diastolic velocity (EDV), and peak systolic velocity (PSV). The system’s performance was assessed using both internal and external test sets, with its effectiveness evaluated based on agreement with the ultrasound specialist and the area under the receiver operating characteristic (ROC) curve for binary classification. Results A total of 877 patients with EC diagnosed by endometrial biopsy at Hospital of Traditional Chinese Medicine of Qiqihar between January 1, 2020, and December 31, 2024, were enrolled in this study. 877 ultrasound images were divided into three groups: 614 for training, 175 for validation, and 88 for testing. The AUC for the training set was 0.844 (95% CI: 0.784–0.893). In the validation set, the AUC for predicting EC was 0.811 (95% CI: 0.748-0.864), while in the testing set, the AUC reached 0.858 (95% CI: 0.800-0.905). Conclusions The DL model demonstrated high accuracy and robustness, significantly enhancing the ability to diagnostic assistance for EC through ultrasound in postmenopausal women. This provides substantial clinical value, especially by enabling less experienced physicians in primary care settings to effectively detect EC lesions, ensuring that patients receive timely diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研兵完成签到 ,获得积分10
16秒前
20秒前
22秒前
40秒前
共享精神应助Harrison采纳,获得10
44秒前
轻松凌柏发布了新的文献求助10
44秒前
1分钟前
852应助koubi采纳,获得10
1分钟前
1分钟前
善学以致用应助Harrison采纳,获得10
1分钟前
浮游应助mmm采纳,获得10
1分钟前
1分钟前
koubi发布了新的文献求助10
1分钟前
打打应助ZoyaR采纳,获得10
1分钟前
1分钟前
koubi完成签到,获得积分10
2分钟前
2分钟前
ZoyaR发布了新的文献求助10
2分钟前
2分钟前
mmm完成签到,获得积分10
2分钟前
2分钟前
ZoyaR完成签到,获得积分10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
研友_R2D2发布了新的文献求助10
2分钟前
2分钟前
2分钟前
清风朗月发布了新的文献求助10
3分钟前
3分钟前
3分钟前
斯文败类应助清风朗月采纳,获得10
3分钟前
Harrison发布了新的文献求助10
3分钟前
李爱国应助轻松凌柏采纳,获得10
3分钟前
3分钟前
俏皮的钻石完成签到 ,获得积分10
3分钟前
轻松凌柏完成签到 ,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553