电容去离子
石墨烯
材料科学
纳米技术
吸附
聚合物
氧化物
海水淡化
化学工程
电极
离子
电化学
膜
化学
复合材料
有机化学
物理化学
工程类
生物化学
冶金
作者
Chen Tang,Hongli Chen,Qian Li,Changle Li,Ying Li,Azhar Alowasheeir,Zeinhom M. El‐Bahy,Guoxiu Wang,Chongyin Zhang,Yusuke Yamauchi,Xingtao Xu
标识
DOI:10.1002/advs.202504527
摘要
Abstract The development of high‐performance capacitive deionization (CDI) electrodes demands innovative materials that integrate rapid ion transport, high salt adsorption capacity (SAC), and oxidative stability. This challenge is addressed through a surface nanoarchitectonics strategy, constructing 2D mesochannel polypyrrole/reduced graphene oxide heterostructures (mPPy/rGO) with ordered 1D mesochannels (~8 nm) parallel to the graphene surface. By confining the self‐assembly of cylindrical polymer brushes on freestanding rGO substrates, directional ion highways are simultaneously engineered that significantly reduce transport tortuosity. In addition, corrosion‐resistant polymer interfaces block oxygen penetration, and strong interfacial interactions between PPy and rGO ensure efficient electron transfer. The mPPy/rGO‐based CDI cell achieves breakthrough performance: ultrahigh SAC of 84.1 mg g −1 (4.5× activated carbon, the salt concentration: 2 g L −1 ), and 96.8% capacity retention over 100 cycles in air‐equilibrated saline solution (the salt concentration: 500 mg L −1 ). This interfacial confinement methodology establishes a universal paradigm for designing polymer‐based desalination materials with atomically precise transport pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI