Bilayer-structured nanocomposites with ultrahigh energy density and large discharge efficiency at high temperature via balancing energy storage and thermal conductive layers

材料科学 电场 纳米复合材料 电介质 复合材料 焦耳加热 双层 聚醚酰亚胺 电场位移场 聚合物 光电子学 物理 压电 生物 量子力学 遗传学
作者
Zhangmeng Luo,Shuaibing Gao,Di Wu,Chao Chen,Meng Shen,Yongming Hu,Haitao Huang,Shenglin Jiang,Yunbin He,Qingfeng Zhang
出处
期刊:Materials Today Energy [Elsevier BV]
卷期号:33: 101277-101277 被引量:8
标识
DOI:10.1016/j.mtener.2023.101277
摘要

Dielectric polymers are good candidates for electrostatic energy storage due to their large breakdown strength (Eb) and high reliability, but they cannot be capable of working efficiently at high temperature. Here, we have designed and developed (Pb0.97La0.02)(Zr0.93Sn0.03Ti0.04)O3 (PLZST) antiferroelectrics (AFEs)@dopamine (DA)/polyetherimide (PEI)-Al2O3/PEI bilayer nanocomposites. Bilayer-structured configurations combine advantages of orthorhombic PLZST AFEs with large maximum electric displacement (Dmax) and low remnant electric displacement (Dr) at elevated temperature, and Al2O3 with high thermal conductivity, which can make nanocomposites possess narrow high-temperature electric displacement-electric field loops. Large dielectric difference of [email protected]/PEI and Al2O3/PEI layers causes the reapportionment of the applied electric field at the interfaces of adjacent layers, which inhibits growth of electrical trees and reduces electrical conduction loss, thus resulting in improved Eb. Consequently, benefited from high Eb of 4570 kV/cm, low Dr of 0.89 μC/cm2, and large Dmax-Dr of 4.75 μC/cm2, the bilayer nanocomposite exhibits not only a large charge–discharge efficiency of 73% but also an ultrahigh discharged energy density of 10.27 J/cm3 at 150 °C, which far better than those of recently reported polymer composites. Finite element simulations on the evolution behavior of electrical trees and dissipation of Joule heat further confirm the rationality of the designed bilayer structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助yuaner采纳,获得10
刚刚
随遇而安应助yuaner采纳,获得20
刚刚
大个应助yuaner采纳,获得10
刚刚
隐形曼青应助yuaner采纳,获得10
刚刚
搜集达人应助yuaner采纳,获得10
刚刚
烟花应助yuaner采纳,获得10
刚刚
ss应助yuaner采纳,获得10
刚刚
bkagyin应助yuaner采纳,获得10
1秒前
wanci应助yuaner采纳,获得10
1秒前
在水一方应助yuaner采纳,获得10
1秒前
2秒前
Qing完成签到,获得积分10
2秒前
楊子完成签到,获得积分10
6秒前
老鐵完成签到,获得积分10
9秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
zmnzmnzmn应助科研通管家采纳,获得10
10秒前
zmnzmnzmn应助科研通管家采纳,获得10
10秒前
zmnzmnzmn应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
小牛完成签到 ,获得积分10
12秒前
usrcu完成签到 ,获得积分10
12秒前
13秒前
共享精神应助lvsehx采纳,获得10
13秒前
我是老大应助张秋雨采纳,获得10
14秒前
高兴的问儿完成签到 ,获得积分10
16秒前
所所应助Diana采纳,获得10
17秒前
17秒前
20秒前
21秒前
22秒前
lllxxx完成签到 ,获得积分10
22秒前
Fangfang发布了新的文献求助10
25秒前
25秒前
小笼包完成签到,获得积分10
25秒前
张秋雨发布了新的文献求助10
26秒前
27秒前
任性翠安完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440