Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

可解释性 医学 概化理论 深度学习 生物标志物发现 生物标志物 人工智能 癌症 机器学习 探路者 临床实习 生物信息学 计算机科学 内科学 心理学 蛋白质组学 生物 发展心理学 生物化学 家庭医学 图书馆学 基因
作者
Junhao Liang,Weisheng Zhang,Jianghui Yang,Meilong Wu,Qionghai Dai,Hongfang Yin,Ying Xiao,Lingjie Kong
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (4): 408-420 被引量:48
标识
DOI:10.1038/s42256-023-00635-3
摘要

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities. The potential of deep learning in pathological prognosis has been hampered by limited interpretability in clinical applications. Liang and colleagues present a human-centric deep learning framework that supports the discovery of prognostic biomarkers in an interpretable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yannis2020发布了新的文献求助10
刚刚
英姑应助燕天与采纳,获得10
刚刚
axin发布了新的文献求助10
1秒前
科研通AI2S应助momo采纳,获得10
1秒前
2秒前
2秒前
XWF发布了新的文献求助80
3秒前
Eternity发布了新的文献求助10
4秒前
8秒前
9秒前
喵喵发布了新的文献求助10
9秒前
9秒前
9秒前
筑梦之鱼完成签到,获得积分10
9秒前
Barid发布了新的文献求助10
9秒前
10秒前
candy6663339完成签到,获得积分10
11秒前
yzy发布了新的文献求助10
12秒前
科研通AI2S应助疯狂的少女采纳,获得10
13秒前
15秒前
苏妲己发布了新的文献求助10
15秒前
15秒前
禹山河完成签到 ,获得积分10
16秒前
热可可728发布了新的文献求助30
17秒前
我是老大应助行则将至采纳,获得30
18秒前
CCY发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
大方弘文发布了新的文献求助30
21秒前
哭唧唧完成签到,获得积分10
21秒前
yzy完成签到,获得积分10
21秒前
S8关闭了S8文献求助
21秒前
xing完成签到,获得积分20
22秒前
22秒前
快乐小海带完成签到,获得积分10
23秒前
25秒前
annie2D发布了新的文献求助10
25秒前
fanfan完成签到 ,获得积分10
27秒前
汉堡包应助科研通管家采纳,获得10
28秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906005
求助须知:如何正确求助?哪些是违规求助? 3451576
关于积分的说明 10865221
捐赠科研通 3176966
什么是DOI,文献DOI怎么找? 1755166
邀请新用户注册赠送积分活动 848686
科研通“疑难数据库(出版商)”最低求助积分说明 791183