Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

可解释性 医学 概化理论 深度学习 生物标志物发现 生物标志物 人工智能 癌症 机器学习 探路者 临床实习 生物信息学 计算机科学 内科学 心理学 蛋白质组学 生物 发展心理学 生物化学 家庭医学 图书馆学 基因
作者
Junhao Liang,Weisheng Zhang,Jianghui Yang,Meilong Wu,Qionghai Dai,Hongfang Yin,Ying Xiao,Lingjie Kong
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (4): 408-420 被引量:46
标识
DOI:10.1038/s42256-023-00635-3
摘要

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities. The potential of deep learning in pathological prognosis has been hampered by limited interpretability in clinical applications. Liang and colleagues present a human-centric deep learning framework that supports the discovery of prognostic biomarkers in an interpretable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟雨烟暮发布了新的文献求助20
刚刚
100关闭了100文献求助
刚刚
帅气西牛完成签到,获得积分10
刚刚
大个应助汤泽琪采纳,获得10
4秒前
5秒前
colormeblue完成签到,获得积分10
9秒前
14秒前
小碗完成签到 ,获得积分10
14秒前
15秒前
16秒前
丘比特应助麻瓜X采纳,获得10
17秒前
CipherSage应助星黛露采纳,获得10
18秒前
19秒前
19秒前
哔哔鱼发布了新的文献求助10
19秒前
任性的元冬完成签到,获得积分20
19秒前
aura完成签到 ,获得积分10
20秒前
小樊同学发布了新的文献求助10
21秒前
22秒前
丰富的小甜瓜完成签到,获得积分10
22秒前
23秒前
icecream发布了新的文献求助10
24秒前
英俊的铭应助任性的元冬采纳,获得10
25秒前
科研通AI5应助初初见你采纳,获得10
26秒前
木木三发布了新的文献求助10
27秒前
雄i完成签到,获得积分10
27秒前
ShiRz发布了新的文献求助10
28秒前
29秒前
很傻的狗完成签到,获得积分10
30秒前
ABC完成签到,获得积分10
32秒前
苹果巧蕊完成签到 ,获得积分10
34秒前
英俊的铭应助闫晓丽采纳,获得10
34秒前
余额发布了新的文献求助10
34秒前
icecream完成签到,获得积分10
34秒前
知来者完成签到,获得积分10
35秒前
鸠摩智完成签到,获得积分10
37秒前
朽木完成签到 ,获得积分10
37秒前
39秒前
40秒前
暮寻屿苗完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959