TrGPCR:GPCR-ligand Binding Affinity Predicting based on Dynamic Deep Transfer Learning

G蛋白偶联受体 计算机科学 药物发现 人工智能 配体(生物化学) 亲缘关系 领域(数学分析) 深度学习 均方误差 计算生物学 机器学习 化学 生物信息学 受体 数学 生物 统计 生物化学 数学分析
作者
Yaoyao Lu,Runhua Zhang,Tengsheng Jiang,Qiming Fu,Zhiming Cui,Hongjie Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:6
标识
DOI:10.1109/jbhi.2023.3307928
摘要

Predicting G protein-coupled receptor (GPCR)-ligand binding affinity plays a crucial role in drug development. However, determining GPCR-ligand binding affinities is time-consuming and resource-intensive. Although many studies used data-driven methods to predict binding affinity, most of these methods required protein 3D structure, which was often unknown. Moreover, part of these studies only considered the sequence characteristics of the protein, ignoring the secondary structure of the protein. The number of known GPCR for affinity prediction is only a few thousand, which is insufficient for deep learning training. Therefore, this study aimed to propose a deep transfer learning method called TrGPCR, which used dynamic transfer learning to solve the problem of insufficient GPCR data. We used the Binding Database(BindingDB) as the source domain and the GLASS(GPCR-Ligand Association) database as the target domain. We also introduced protein secondary structures, called pockets, as features to predict binding affinities. Compared with DeepDTA, our model improved by 5.2% on RMSE(root mean square error) and 4.5% on MAE(mean squared error).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼的鲂完成签到,获得积分10
1秒前
搜集达人应助妃莫笑采纳,获得10
5秒前
nv完成签到,获得积分10
6秒前
7秒前
7秒前
SYLH应助飞仔123采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
10秒前
加菲丰丰应助科研通管家采纳,获得30
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
典雅问寒应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
典雅问寒应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
温暖芸应助科研通管家采纳,获得20
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
WANGs发布了新的文献求助10
12秒前
13秒前
飞羽发布了新的文献求助10
14秒前
Zj完成签到,获得积分10
14秒前
14秒前
15秒前
SciGPT应助cc采纳,获得10
16秒前
tayyy发布了新的文献求助10
17秒前
hui发布了新的文献求助30
18秒前
CodeCraft应助干净的语山采纳,获得10
19秒前
科研通AI5应助廾匸采纳,获得10
19秒前
20秒前
包远锋完成签到,获得积分10
20秒前
21秒前
伶俐天蓉发布了新的文献求助10
21秒前
嘻嘻哈哈发布了新的文献求助10
25秒前
科研通AI5应助hui采纳,获得10
25秒前
甜甜妙梦发布了新的文献求助10
25秒前
科研助手6应助缥缈的半芹采纳,获得10
28秒前
28秒前
29秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791256
求助须知:如何正确求助?哪些是违规求助? 3335799
关于积分的说明 10277179
捐赠科研通 3052449
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803125
科研通“疑难数据库(出版商)”最低求助积分说明 761096