光毒性
二次谐波产生
离体
显微镜
深度学习
显微镜
材料科学
多光子荧光显微镜
还原(数学)
功率(物理)
谐波
高次谐波产生
体内
光电子学
光学
计算机科学
人工智能
激光器
化学
物理
荧光显微镜
生物
数学
几何学
量子力学
荧光
生物化学
生物技术
体外
作者
Yi‐Jiun Shen,En‐Yu Liao,Tsung‐Ming Tai,Yi‐Hua Liao,Chi‐Kuang Sun,Cheng‐Kuang Lee,Simon See,Hung‐Wen Chen
标识
DOI:10.1002/jbio.202300285
摘要
The trade-off between high-quality images and cellular health in optical bioimaging is a crucial problem. We demonstrated a deep-learning-based power-enhancement (PE) model in a harmonic generation microscope (HGM), including second harmonic generation (SHG) and third harmonic generation (THG). Our model can predict high-power HGM images from low-power images, greatly reducing the risk of phototoxicity and photodamage. Furthermore, the PE model trained only on normal skin data can also be used to predict abnormal skin data, enabling the dermatopathologist to successfully identify and label cancer cells. The PE model shows potential for in-vivo and ex-vivo HGM imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI