ConvFormer: Combining CNN and Transformer for Medical Image Segmentation

计算机科学 人工智能 编码器 分割 卷积神经网络 变压器 残余物 图像分割 模式识别(心理学) 特征学习 利用 计算机视觉 算法 工程类 计算机安全 电压 电气工程 操作系统
作者
Pengfei Gu,Yejia Zhang,Chaoli Wang,Danny Z. Chen
标识
DOI:10.1109/isbi53787.2023.10230838
摘要

Convolutional neural network (CNN) based methods have achieved great successes in medical image segmentation, but their capability to learn global representations is still limited due to using small effective receptive fields of convolution operations. Transformer based methods are capable of modelling long-range dependencies of information for capturing global representations, yet their ability to model local context is lacking. Integrating CNN and Transformer to learn both local and global representations while exploring multi-scale features is instrumental in further improving medical image segmentation. In this paper, we propose a hierarchical CNN and Transformer hybrid architecture, called ConvFormer, for medical image segmentation. ConvFormer is based on several simple yet effective designs. (1) A feed forward module of Deformable Transformer (DeTrans) is re-designed to introduce local information, called Enhanced DeTrans. (2) A residual-shaped hybrid stem based on a combination of convolutions and Enhanced DeTrans is developed to capture both local and global representations to enhance representation ability. (3) Our encoder utilizes the residual-shaped hybrid stem in a hierarchical manner to generate feature maps in different scales, and an additional Enhanced DeTrans encoder with residual connections is built to exploit multi-scale features with feature maps of different scales as input. Experiments on several datasets show that our ConvFormer, trained from scratch, outperforms various CNN- or Transformer-based architectures, achieving state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉脸小鱼完成签到 ,获得积分10
刚刚
Regina发布了新的文献求助10
1秒前
专注鼠标发布了新的文献求助100
1秒前
夏荷雪石发布了新的文献求助10
1秒前
2秒前
2秒前
栗子发布了新的文献求助10
3秒前
3秒前
桐桐应助哭泣的向雁采纳,获得10
3秒前
4秒前
FX完成签到,获得积分10
4秒前
4秒前
speed完成签到 ,获得积分10
4秒前
4秒前
lukescholar完成签到,获得积分10
4秒前
Gskd发布了新的文献求助10
5秒前
leo完成签到,获得积分10
5秒前
虾滑完成签到,获得积分10
5秒前
5秒前
6秒前
科研小米虫完成签到,获得积分10
6秒前
7秒前
走走走发布了新的文献求助10
7秒前
7秒前
7秒前
科研完成签到 ,获得积分10
7秒前
8秒前
leo发布了新的文献求助10
8秒前
9秒前
Jasper应助鉨汏闫采纳,获得10
9秒前
10秒前
火星上的绝音完成签到,获得积分10
10秒前
田様应助等待含羞草采纳,获得10
10秒前
10秒前
Jasper应助栗子采纳,获得10
10秒前
lll发布了新的文献求助10
11秒前
11秒前
啦啦啦完成签到,获得积分10
13秒前
小二郎应助粗心的智慧采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4275113
求助须知:如何正确求助?哪些是违规求助? 3804222
关于积分的说明 11920722
捐赠科研通 3450847
什么是DOI,文献DOI怎么找? 1892326
邀请新用户注册赠送积分活动 943157
科研通“疑难数据库(出版商)”最低求助积分说明 846855