A classification method for soybean leaf diseases based on an improved ConvNeXt model

判别式 人工智能 计算机科学 深度学习 稳健性(进化) 随机森林 模式识别(心理学) 机器学习 支持向量机 网络模型 特征(语言学) 生物 生物化学 语言学 哲学 基因
作者
Qinghai Wu,Xiao Ma,Haifeng Liu,Cunguang Bi,Helong Yu,Meijing Liang,Jicheng Zhang,Qi Li,You Tang,G. Ye
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:11
标识
DOI:10.1038/s41598-023-46492-3
摘要

Abstract Deep learning technologies have enabled the development of a variety of deep learning models that can be used to detect plant leaf diseases. However, their use in the identification of soybean leaf diseases is currently limited and mostly based on machine learning methods. In this investigation an enhanced deep learning network model was developed to recognize soybean leaf diseases more accurately. The improved network model consists of three parts: feature extraction, attention calculation, and classification. The dataset used was first diversified through data augmentation operations such as random masking to enhance network robustness. An attention module was then used to generate feature maps at various depths. This increased the network’s focus on discriminative features, reduced background noise, and enabled the use of the LeakyReLu activation function in the attention module to prevent situations in which neurons fail to learn when the input is negative. Finally, the extracted features were then integrated using a fully connected layer, and the predicted disease category inferred to improve the classification accuracy of soybean leaf diseases. The average recognition accuracy of the improved network model for soybean leaf diseases was 85.42% both higher than the six deep learning comparison models (ConvNeXt (66.41%), ResNet50 (72.22%), Swin Transformer (77.00%), MobileNetV3 (67.27%), ShuffleNetV2 (59.89%), and SqueezeNet (72.92%)), thus proving the effectiveness of the improved method.The model proposed in this paper was also tested on the grapevine leaf dataset, and the performance ability of the improved network model remained due to other common network models, and overall the proposed network model was very effective in leaf disease identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋小兔完成签到 ,获得积分10
3秒前
4秒前
灰色的乌完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得30
7秒前
FashionBoy应助科研通管家采纳,获得30
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
霸气幼荷完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
彭于彦祖应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
916应助科研通管家采纳,获得10
8秒前
8秒前
Belinda完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
FashionBoy应助WMT采纳,获得10
11秒前
霸气幼荷发布了新的文献求助10
12秒前
13秒前
亲豆丁儿发布了新的文献求助10
15秒前
星辰大海应助江洋大盗采纳,获得10
17秒前
18秒前
18秒前
19秒前
失眠的平松完成签到,获得积分10
21秒前
21秒前
沉静乾完成签到,获得积分10
21秒前
cctv18应助flash_tt采纳,获得10
22秒前
JamesPei应助xx采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864799
求助须知:如何正确求助?哪些是违规求助? 3407264
关于积分的说明 10653244
捐赠科研通 3131261
什么是DOI,文献DOI怎么找? 1726904
邀请新用户注册赠送积分活动 832096
科研通“疑难数据库(出版商)”最低求助积分说明 780127