ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction

水准点(测量) 计算机科学 一般化 人工智能 特征(语言学) 机器学习 接收机工作特性 均方误差 集合(抽象数据类型) 一致性(知识库) 数据挖掘 数学 统计 数学分析 语言学 哲学 大地测量学 程序设计语言 地理
作者
Kejie Fang,Yiming Zhang,Shiyu Du,Jian He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107372-107372 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107372
摘要

Accurate prediction of drug-target affinity (DTA) plays a crucial role in drug discovery and development. Recently, deep learning methods have shown excellent predictive performance on randomly split public datasets. However, verifications are still required on this splitting method to reflect real-world problems in practical applications. And in a cold-start experimental setup, where drugs or proteins in the test set do not appear in the training set, the performance of deep learning models often significantly decreases. This indicates that improving the generalization ability of the models remains a challenge. To this end, in this study, we propose ColdDTA: using data augmentation and attention-based feature fusion to improve the generalization ability of predicting drug-target binding affinity. Specifically, ColdDTA generates new drug-target pairs by removing subgraphs of drugs. The attention-based feature fusion module is also used to better capture the drug-target interactions. We conduct cold-start experiments on three benchmark datasets, and the consistency index (CI) and mean square error (MSE) results on the Davis and KIBA datasets show that ColdDTA outperforms the five state-of-the-art baseline methods. Meanwhile, the results of area under the receiver operating characteristic (ROC-AUC) on the BindingDB dataset show that ColdDTA also has better performance on the classification task. Furthermore, visualizing the model weights allows for interpretable insights. Overall, ColdDTA can better solve the realistic DTA prediction problem. The code has been available to the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猫不吃鱼完成签到 ,获得积分10
1秒前
儒雅醉冬完成签到,获得积分10
1秒前
卜应完成签到,获得积分10
2秒前
吹气球的金毛完成签到,获得积分10
3秒前
ksen发布了新的文献求助10
4秒前
飘逸小笼包完成签到,获得积分10
5秒前
胖达发布了新的文献求助10
5秒前
852应助吴雨峰采纳,获得10
6秒前
Akim应助小王采纳,获得10
6秒前
6秒前
研友_La17wL完成签到,获得积分10
8秒前
善学以致用应助可爱采纳,获得10
10秒前
胖达完成签到,获得积分10
11秒前
11秒前
长卿123完成签到,获得积分10
12秒前
12秒前
丸子_2025000完成签到,获得积分10
12秒前
汉堡包应助受伤书文采纳,获得10
13秒前
17秒前
吴雨峰发布了新的文献求助10
18秒前
科研通AI2S应助南风采纳,获得10
21秒前
明亮的智宸完成签到,获得积分10
23秒前
安静幻枫举报求助违规成功
23秒前
夜白举报求助违规成功
23秒前
REN举报求助违规成功
23秒前
23秒前
24秒前
pengxue完成签到 ,获得积分10
26秒前
超级冷松完成签到 ,获得积分10
27秒前
27秒前
28秒前
司连喜发布了新的文献求助10
28秒前
SCH_zhu完成签到,获得积分10
28秒前
斑其完成签到,获得积分10
28秒前
30秒前
斑其发布了新的文献求助10
30秒前
刺五加完成签到 ,获得积分10
31秒前
curryif发布了新的文献求助10
31秒前
curryif完成签到,获得积分10
36秒前
安静幻枫给宋艳芳的求助进行了留言
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761727
求助须知:如何正确求助?哪些是违规求助? 3305495
关于积分的说明 10134394
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658199
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751