ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction

水准点(测量) 计算机科学 一般化 人工智能 特征(语言学) 机器学习 接收机工作特性 均方误差 集合(抽象数据类型) 一致性(知识库) 数据挖掘 数学 统计 哲学 数学分析 程序设计语言 地理 语言学 大地测量学
作者
Kejie Fang,Yiming Zhang,Shiyu Du,Jian He
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107372-107372 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107372
摘要

Accurate prediction of drug-target affinity (DTA) plays a crucial role in drug discovery and development. Recently, deep learning methods have shown excellent predictive performance on randomly split public datasets. However, verifications are still required on this splitting method to reflect real-world problems in practical applications. And in a cold-start experimental setup, where drugs or proteins in the test set do not appear in the training set, the performance of deep learning models often significantly decreases. This indicates that improving the generalization ability of the models remains a challenge. To this end, in this study, we propose ColdDTA: using data augmentation and attention-based feature fusion to improve the generalization ability of predicting drug-target binding affinity. Specifically, ColdDTA generates new drug-target pairs by removing subgraphs of drugs. The attention-based feature fusion module is also used to better capture the drug-target interactions. We conduct cold-start experiments on three benchmark datasets, and the consistency index (CI) and mean square error (MSE) results on the Davis and KIBA datasets show that ColdDTA outperforms the five state-of-the-art baseline methods. Meanwhile, the results of area under the receiver operating characteristic (ROC-AUC) on the BindingDB dataset show that ColdDTA also has better performance on the classification task. Furthermore, visualizing the model weights allows for interpretable insights. Overall, ColdDTA can better solve the realistic DTA prediction problem. The code has been available to the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cookie完成签到,获得积分10
刚刚
柒柒的小熊完成签到,获得积分10
1秒前
1秒前
Hello应助萌之痴痴采纳,获得10
2秒前
hahaer完成签到,获得积分10
4秒前
领导范儿应助失眠虔纹采纳,获得10
5秒前
6秒前
Owen应助凝子老师采纳,获得10
9秒前
9秒前
南宫炽滔完成签到 ,获得积分10
11秒前
11秒前
丘比特应助飞羽采纳,获得10
12秒前
沙拉发布了新的文献求助10
12秒前
13秒前
14秒前
椰子糖完成签到 ,获得积分10
15秒前
15秒前
ZHU完成签到,获得积分10
16秒前
阳阳发布了新的文献求助10
17秒前
Raymond应助雪山飞龙采纳,获得10
17秒前
kk发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
23秒前
果果瑞宁发布了新的文献求助10
23秒前
wewewew发布了新的文献求助10
23秒前
23秒前
打打应助沙拉采纳,获得10
23秒前
24秒前
诸笑白发布了新的文献求助10
25秒前
丹丹完成签到 ,获得积分10
25秒前
kk完成签到,获得积分10
25秒前
26秒前
caoyy发布了新的文献求助10
26秒前
27秒前
28秒前
斗图不怕输完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849