A Genetic Algorithm-based sequential instance selection framework for ensemble learning

计算机科学 集成学习 水准点(测量) 机器学习 多数决原则 遗传算法 人工智能 趋同(经济学) 选择(遗传算法) 组分(热力学) 集合预报 数据挖掘 物理 大地测量学 经济增长 经济 热力学 地理
作者
Che Xu,Shuwen Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121269-121269 被引量:8
标识
DOI:10.1016/j.eswa.2023.121269
摘要

The accumulation of large amounts of historical data has led to the wide application of ensemble learning over the past few decades, but the balance between the individual accuracy of base classifiers (BCs) and the diversity among these BCs is rarely considered in the construction of ensemble models. Since such a balance is crucial to the success of ensemble models, this paper proposes a Genetic Algorithm-based sequential instance selection framework to address this research gap. The novelties of the proposed framework include: transforming the balance between the individual accuracy of BCs and the diversity among BCs into a general combinatorial optimization model and designing a Genetic Algorithm-based evolutionary instance selection method to solve this model. The proposed framework not only overcomes the inherent limitations of the Genetic Algorithm in some high-dimensional tasks but also provides an explicit and automatic way to balance the accuracy and diversity by searching appropriate training data subsets for different component BCs. Based on obtained training data subsets, the component BCs of the ensemble model are generated sequentially, and their predictions are further combined with the weighted majority voting rule. Using 30 real datasets collected from various practical applications, such as medicine, business, and industry, the effectiveness of the proposed framework in constructing powerful ensemble models is examined and compared with six benchmark ensemble learning methods. In addition, the capability of the proposed framework to improve convergence performances is also examined by the comparison with the traditional Genetic Algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
andrewmed发布了新的文献求助10
4秒前
lakers发布了新的文献求助10
5秒前
传奇3应助Labubububu采纳,获得10
6秒前
6秒前
7秒前
半岛铁盒发布了新的文献求助10
7秒前
岳岳岳发布了新的文献求助10
10秒前
guozizi发布了新的文献求助30
11秒前
无花果应助刑天采纳,获得10
11秒前
珊啊是珊珊啊完成签到 ,获得积分10
13秒前
路人一枚发布了新的文献求助10
14秒前
14秒前
彪壮的吐司完成签到,获得积分10
15秒前
田T应助datang采纳,获得10
15秒前
阿飞飞发布了新的文献求助30
17秒前
19秒前
小慧儿发布了新的文献求助10
20秒前
20秒前
22秒前
tian19998完成签到,获得积分10
23秒前
23秒前
tian19998发布了新的文献求助10
25秒前
Labubububu发布了新的文献求助10
26秒前
Ava应助咻咻采纳,获得10
27秒前
糊涂的萍发布了新的文献求助10
28秒前
情怀应助aosiyi采纳,获得10
31秒前
自觉雨文发布了新的文献求助10
32秒前
搜集达人应助tian19998采纳,获得10
32秒前
32秒前
ll发布了新的文献求助30
32秒前
gzhoax完成签到,获得积分10
33秒前
领导范儿应助xx采纳,获得10
34秒前
35秒前
36秒前
华仔应助科研通管家采纳,获得10
36秒前
星辰大海应助科研通管家采纳,获得10
36秒前
lizishu应助科研通管家采纳,获得10
36秒前
lizishu应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872925
求助须知:如何正确求助?哪些是违规求助? 6493788
关于积分的说明 15670196
捐赠科研通 4990329
什么是DOI,文献DOI怎么找? 2690207
邀请新用户注册赠送积分活动 1632742
关于科研通互助平台的介绍 1590623