Recent advances in fish cutting: From cutting schemes to automatic technologies and internet of things innovations

计算机科学 自动化 背景(考古学) 制造工程 过程(计算) 工程类 机械工程 渔业 生物 古生物学 操作系统
作者
Qing Li,Huawei Ma,Weiqing Min,Yang Wang,Ran Zhao,Yongjie Zhou,Yuqing Tan,Yongkang Luo,Hui Hong
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:23 (6)
标识
DOI:10.1111/1541-4337.70039
摘要

Abstract Fish‐cutting products are widely loved by consumers due to the unique nutrient composition and flavor in different cuts. However, fish‐cutting faces the issue of labor shortage due to the harsh working environment, huge workload, and seasonal work. Hence, some automatic, efficient, and large‐scale cutting technologies are needed to overcome these challenges. Accompanied by the development of Industry 4.0, the Internet of Things (IoT), artificial intelligence, big data, and blockchain technologies are progressively applied in the cutting process, which plays pivotal roles in digital production monitoring and product safety enhancement. This review focuses on the main fish‐cutting schemes and delves into advanced automatic cutting techniques, showing the latest technological advancements and how they are revolutionizing fish cutting. Additionally, the production monitoring architecture based on IoT in the fish‐cutting process is discussed. Fish cutting involves a variety of schemes tailored to the specific characteristics of each fish cut. The cutting process includes deheading and tail removal, filleting, boning, skinning, trimming, and bone inspection. By incorporating sensors, machine vision, deep learning, and advanced cutting tools, these technologies are transforming fish cutting from a manual to an automated process. This transformation has significant practical implications for the industry, offering improved efficiency, consistent product quality, and enhanced safety, ultimately providing a modernized manufacturing approach to fish‐cutting automation within the context of Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助zyk采纳,获得10
2秒前
小小王完成签到 ,获得积分10
2秒前
surfer363完成签到,获得积分10
5秒前
6秒前
9秒前
君君发布了新的文献求助10
10秒前
科目三应助暴躁的香氛采纳,获得30
10秒前
思源应助面包小狗采纳,获得10
10秒前
领导范儿应助洛luo采纳,获得10
11秒前
搜集达人应助吴zzzz采纳,获得10
13秒前
任1220发布了新的文献求助10
13秒前
14秒前
传奇3应助科研小白采纳,获得30
15秒前
大海方间完成签到,获得积分10
15秒前
18秒前
机灵的信封完成签到,获得积分20
19秒前
顾矜应助啦啦啦啦啦采纳,获得10
21秒前
22秒前
22秒前
dsuccess完成签到,获得积分20
22秒前
顾矜应助coster采纳,获得10
24秒前
27秒前
Naruto发布了新的文献求助20
28秒前
28秒前
Hello应助sunshine采纳,获得10
28秒前
zhhh发布了新的文献求助10
29秒前
共享精神应助风华正茂采纳,获得10
29秒前
星宇完成签到 ,获得积分10
30秒前
霹雳枕头完成签到,获得积分10
30秒前
lulu123发布了新的文献求助10
32秒前
32秒前
可研完成签到,获得积分20
33秒前
gaojia完成签到,获得积分10
36秒前
36秒前
科研通AI2S应助长生采纳,获得10
36秒前
37秒前
38秒前
负责的哑铃完成签到,获得积分10
40秒前
小星星发布了新的文献求助30
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327264
关于积分的说明 10230187
捐赠科研通 3042125
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799356
科研通“疑难数据库(出版商)”最低求助积分说明 758774