Machine Learning‐Enabled Drug‐Induced Toxicity Prediction

毒性 计算机科学 药物毒性 水准点(测量) 药物发现 药品 机器学习 人工智能 药理学 生物信息学 医学 生物 内科学 大地测量学 地理
作者
Changsen Bai,Lianlian Wu,Ruijiang Li,Yang Cao,Song He,Xiaochen Bo
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202413405
摘要

Abstract Unexpected toxicity has become a significant obstacle to drug candidate development, accounting for 30% of drug discovery failures. Traditional toxicity assessment through animal testing is costly and time‐consuming. Big data and artificial intelligence (AI), especially machine learning (ML), are robustly contributing to innovation and progress in toxicology research. However, the optimal AI model for different types of toxicity usually varies, making it essential to conduct comparative analyses of AI methods across toxicity domains. The diverse data sources also pose challenges for researchers focusing on specific toxicity studies. In this review, 10 categories of drug‐induced toxicity is examined, summarizing the characteristics and applicable ML models, including both predictive and interpretable algorithms, striking a balance between breadth and depth. Key databases and tools used in toxicity prediction are also highlighted, including toxicology, chemical, multi‐omics, and benchmark databases, organized by their focus and function to clarify their roles in drug‐induced toxicity prediction. Finally, strategies to turn challenges into opportunities are analyzed and discussed. This review may provide researchers with a valuable reference for understanding and utilizing the available resources to bridge prediction and mechanistic insights, and further advance the application of ML in drugs‐induced toxicity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大了发布了新的文献求助10
1秒前
2秒前
sobergod发布了新的文献求助10
2秒前
balko完成签到,获得积分10
2秒前
巴西琉斯发布了新的文献求助10
4秒前
科目三应助hwezhu采纳,获得10
4秒前
CodeCraft应助不摇碧莲采纳,获得10
5秒前
SciGPT应助言言采纳,获得10
7秒前
跳跃尔蓝完成签到 ,获得积分20
9秒前
12秒前
xixixixixixi完成签到,获得积分10
14秒前
李健的小迷弟应助周周采纳,获得10
17秒前
19秒前
felix完成签到,获得积分10
19秒前
20秒前
21秒前
充电宝应助开心的饼干采纳,获得10
24秒前
25秒前
hwezhu发布了新的文献求助10
25秒前
晨曦发布了新的文献求助10
26秒前
树123发布了新的文献求助10
27秒前
CL完成签到 ,获得积分10
28秒前
30秒前
折颜发布了新的文献求助10
31秒前
33秒前
隐形曼青应助文静小熊猫采纳,获得10
34秒前
Akim应助树123采纳,获得10
35秒前
36秒前
37秒前
37秒前
lewis_xl完成签到,获得积分10
40秒前
yoyo完成签到,获得积分10
41秒前
Lexrandom发布了新的文献求助400
42秒前
42秒前
大方的半莲完成签到,获得积分10
42秒前
言言发布了新的文献求助10
43秒前
丘比特应助小李采纳,获得10
44秒前
Ava应助hwezhu采纳,获得10
47秒前
折颜完成签到,获得积分10
47秒前
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784590
求助须知:如何正确求助?哪些是违规求助? 3329680
关于积分的说明 10243282
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800431
科研通“疑难数据库(出版商)”最低求助积分说明 759391