Semi-Supervised Echocardiography Video Segmentation via Adaptive Spatio-Temporal Tensor Semantic Awareness and Memory Flow

计算机科学 人工智能 分割 计算机视觉 结构张量 模式识别(心理学) 特征(语言学) 帧(网络) 尺度空间分割 冗余(工程) 图像分割 图像(数学) 语言学 电信 操作系统 哲学
作者
Xiaodi Li,Cui Chen,Siyuan Shi,Hongwen Fei,Yue Hu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3526955
摘要

Accurate segmentation of cardiac structures in echocardiography videos is vital for diagnosing heart disease. However, challenges such as speckle noise, low spatial resolution, and incomplete video annotations hinder the accuracy and efficiency of segmentation tasks. Existing video-based segmentation methods mainly utilize optical flow estimation and cross-frame attention to establish pixel-level correlations between frames, which are usually sensitive to noise and have high computational costs. In this paper, we present an innovative echocardiography video segmentation framework that exploits the inherent spatio-temporal correlation of echocardiography video feature tensors. Specifically, we perform adaptive tensor singular value decomposition (t-SVD) on the video semantic feature tensor within a learnable 3D transform domain. By utilizing learnable thresholds, we preserve the principal singular values to reduce redundancy in the high-dimensional spatio-temporal feature tensor and enforce its potential low-rank property. Through this process, we can capture the temporal evolution of the target tissue by effectively utilizing information from limited labeled frames, thus overcoming the constraints of sparse annotations. Furthermore, we introduce a memory flow method that propagates relevant information between adjacent frames based on the multi-scale affinities to precisely resolve frame-to-frame variations of dynamic tissues, thereby improving the accuracy and continuity of segmentation results. Extensive experiments conducted on both public and private datasets validate the superiority of our proposed method over state-of-the-art methods, demonstrating improved performance in echocardiography video segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助lyy采纳,获得10
1秒前
2秒前
科研小白完成签到,获得积分10
2秒前
共享精神应助雪白莹芝采纳,获得10
2秒前
清i晨完成签到,获得积分10
3秒前
风趣静枫发布了新的文献求助10
3秒前
英俊的铭应助MOLV采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
iijjj发布了新的文献求助10
5秒前
华仔应助科研打怪升级中采纳,获得10
5秒前
可爱的函函应助lz采纳,获得10
6秒前
basil发布了新的文献求助10
7秒前
7秒前
JamesPei应助ok的采纳,获得10
7秒前
阳光完成签到,获得积分10
8秒前
晴枫3648完成签到,获得积分20
8秒前
科研通AI5应助guoyanna采纳,获得10
8秒前
Akim应助王伯文采纳,获得10
8秒前
酷炫静枫发布了新的文献求助10
8秒前
gaw2008完成签到,获得积分10
9秒前
任性雨安发布了新的文献求助10
9秒前
薄雪草发布了新的文献求助10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助150
12秒前
Hello应助风趣静枫采纳,获得10
13秒前
xiaozhuzhu完成签到,获得积分10
13秒前
利多卡因完成签到,获得积分10
13秒前
13秒前
Nina完成签到,获得积分10
13秒前
烟花应助hushan53采纳,获得10
14秒前
14秒前
Orange应助一颗好困芽采纳,获得10
15秒前
尊敬吐司完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Methane Conversion Routes 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048881
求助须知:如何正确求助?哪些是违规求助? 4277106
关于积分的说明 13332558
捐赠科研通 4091637
什么是DOI,文献DOI怎么找? 2239163
邀请新用户注册赠送积分活动 1246040
关于科研通互助平台的介绍 1174644