Examining the Prediction of Vapor-Liquid Equilibria through Comparative Analysis: Deep Learning versus Classical Cubic and Associating Fluid Theory Approaches
热力学
物理
作者
Muneeb Khan,Pramod Warrier,Babar Zaman,Cor J. Peters
标识
DOI:10.58692/jotcsb.1545110
摘要
Accurate vapor-liquid equilibria (VLE) calculations of carbon dioxide and hydrogen sulfide mixtures are critical to gas processing and the affordable, safe design of flow assurance technologies. Inaccurate VLE predictions can lead to inaccurate gas hydrate phase equilibria predictions and ensuing safety and economic risks. This research paper explores the potential incorporation of Deep Neural Networks (DNNs) to support conventional expert systems within the context of predicting VLE. It facilitates more flexible and data-driven approaches that are required due to the growing intricacy and dynamic character of chemical processes. Moreover, various cubic and non-cubic equation of state (EoS) models (such as SRK, PR, CPA, SAFT, and PC-SAFT) were also examined to compare predicted VLE for various mixtures of CO2 and H2S. Prior to the comparison of DNN-predicted VLE with EOS models, binary interaction parameters were optimized for all EOS with the available experimental phase equilibria measurements. Model accuracies were compared and analyzed for various binary systems containing CO2/H2S + other associative and non-associative components. The absolute average deviation in vapor and liquid phase composition/bubble pressure was calculated and compared for all five-state EOS with DNN predictions. The DNN and equation of states with BIP gave a reliable illustration of the phase behavior of CO2/H2S-containing systems compared to others as indicated by the lower AADP values. By contrasting the applied DNN model with conventional techniques, we explore the promising channel for future research directions and industry applications, as well as an opportunity for innovation and field advancement for modern expert systems.