Development of an AI-Supported Clinical Tool for Assessing Mandibular Third Molar Tooth Extraction Difficulty Using Panoramic Radiographs and YOLO11 Sub-Models

臼齿 射线照相术 口腔正畸科 牙科 下颌第三磨牙 萃取(化学) 医学 放射科 化学 色谱法
作者
Serap Akdoğan,Muhammet Üsame Özıç,Melek Taşsöker
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:15 (4): 462-462 被引量:1
标识
DOI:10.3390/diagnostics15040462
摘要

Background/Objective: This study aimed to develop an AI-supported clinical tool to evaluate the difficulty of mandibular third molar extractions based on panoramic radiographs. Methods: A dataset of 2000 panoramic radiographs collected between 2023 and 2024 was annotated by an oral radiologist using bounding boxes. YOLO11 sub-models were trained and tested for three basic scenarios according to the Pederson Index criteria, taking into account Winter (angulation) and Pell and Gregory (ramus relationship and depth). For each scenario, the YOLO11 sub-models were trained using 80% of the data for training, 10% for validation, and 10% for testing. Model performance was assessed using precision, recall, F1 score, and mean Average Precision (mAP) metrics, and different graphs. Results: YOLO11 sub-models (nano, small, medium, large, extra-large) showed high accuracy and similar behavior in all scenarios. For the calculation of the Pederson index, nano for Winter (average training mAP@0.50 = 0.963; testing mAP@0.50 = 0.975), nano for class (average training mAP@0.50 = 0.979; testing mAP@0.50 = 0.965), and medium for level (average training mAP@0.50 = 0.977; testing mAP@0.50 = 0.989) from the Pell and Gregory categories were selected as optimal sub-models. Three scenarios were run consecutively on panoramic images, and slightly difficult, moderately difficult, and very difficult Pederson indexes were obtained according to the scores. The results were evaluated by an oral radiologist, and the AI system performed successfully in terms of Pederson index determination with 97.00% precision, 94.55% recall, and 95.76% F1 score. Conclusions: The YOLO11-supported clinical tool demonstrated high accuracy and reliability in assessing mandibular third molar extraction difficulty on panoramic radiographs. These models were integrated into a GUI for clinical use, offering dentists a simple tool for estimating extraction difficulty, and improving decision-making and patient management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
影子发布了新的文献求助10
刚刚
从容的宝马完成签到,获得积分10
刚刚
和谐的访文完成签到 ,获得积分10
刚刚
满意语风发布了新的文献求助10
刚刚
刚刚
天天快乐应助qiaoqiao采纳,获得10
1秒前
小花dgy发布了新的文献求助10
1秒前
2秒前
sos发布了新的文献求助10
2秒前
2秒前
3秒前
Jasper应助qingfeng采纳,获得10
5秒前
风一样的风干肠完成签到,获得积分10
5秒前
Innogen发布了新的文献求助10
6秒前
6秒前
英俊的铭应助xy采纳,获得10
7秒前
小二郎应助T拐拐采纳,获得10
7秒前
小宋发布了新的文献求助10
7秒前
8秒前
8秒前
陈俊雷完成签到 ,获得积分0
9秒前
慕青应助影子采纳,获得10
11秒前
Jolene发布了新的文献求助20
11秒前
11秒前
12秒前
13秒前
小全完成签到,获得积分10
13秒前
Slide完成签到 ,获得积分10
13秒前
liuj完成签到,获得积分10
14秒前
15秒前
15秒前
是小明啊发布了新的文献求助20
15秒前
Hello应助机智的店长采纳,获得10
16秒前
16秒前
Betty应助科研通管家采纳,获得10
17秒前
yar应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
烟花应助科研通管家采纳,获得10
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050274
求助须知:如何正确求助?哪些是违规求助? 3588504
关于积分的说明 11403149
捐赠科研通 3314890
什么是DOI,文献DOI怎么找? 1823409
邀请新用户注册赠送积分活动 895436
科研通“疑难数据库(出版商)”最低求助积分说明 816772