Efficient generation of realistic guided wave signals for reliability estimation

可靠性(半导体) 估计 可靠性工程 计算机科学 工程类 物理 系统工程 功率(物理) 量子力学
作者
Panpan Xu,Robin M. Jones,Georgios Sarris,Peter Huthwaite
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241302469
摘要

Across nondestructive testing and structural health monitoring (SHM), accurate knowledge of the systems’ reliability for detecting defects, such as probability of detection (POD) analysis is essential to enabling widespread adoption. Traditionally, this relies on access to extensive experimental data to cover all critical areas of the parametric space, which becomes expensive, and heavily undermines the benefit such systems bring. In response to these challenges, reliability estimation based on numerical simulation emerges as a practical solution, offering enhanced efficiency and cost-effectiveness. Nevertheless, precise reliability estimation demands that the simulated data faithfully represents the real-world performance. In this context, a numerical framework tailored to generate realistic signals for reliability estimation purposes is presented here, focusing on the application of guided wave SHM for pipe monitoring. It specifically incorporates key characteristics of real signals: random noise and coherent noise caused by the imbalance in transducer performance within guided wave monitoring systems. The effectiveness of our proposed methodology is demonstrated through a comprehensive comparative analysis between simulation-generated signals and experimental signals both individually and statistically. Furthermore, to assess the reliability of a guided wave system in terms of the inspection range for pipe monitoring, a series of POD analyses using simulation-generated data were conducted. The comparison of POD curves derived from ideal and realistic simulation data underscores the necessity of considering coherent noise for accurate POD curve calculations. Moreover, the POD analysis based on realistic simulation-generated data provides a quantitative estimation of the inspection range with more details compared to the current industry practice. Our presented framework offers a pioneering approach to generate realistic guided wave signals, thereby facilitating the practical assessment of the reliability of guided wave monitoring systems. This advancement also has the potential to effectively address challenges related to data scarcity in broader applications requiring high-fidelity data, such as the training of machine learning models for damage identification from complex signals for all aspects of ultrasonic inspections with both guided and bulk waves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修发布了新的文献求助10
1秒前
baobao完成签到,获得积分10
1秒前
Lucas应助迷了路的猫采纳,获得10
1秒前
2秒前
garyaa完成签到,获得积分10
2秒前
LeonZhang完成签到 ,获得积分10
5秒前
科研通AI5应助活泼的觅云采纳,获得30
5秒前
纪外绣完成签到,获得积分10
5秒前
Allen完成签到,获得积分10
7秒前
细心的老头完成签到 ,获得积分10
7秒前
落红雨完成签到 ,获得积分10
8秒前
10秒前
MM完成签到,获得积分10
11秒前
善学以致用应助win采纳,获得10
11秒前
科研通AI5应助活泼的觅云采纳,获得10
12秒前
13秒前
科研通AI5应助Bond采纳,获得10
13秒前
马騳骉完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
表演完成签到 ,获得积分10
17秒前
科研助手6应助平安喜乐采纳,获得10
17秒前
小米稀饭完成签到 ,获得积分10
18秒前
空白完成签到,获得积分10
18秒前
18秒前
19秒前
宫晓丝发布了新的文献求助10
19秒前
博修发布了新的文献求助10
21秒前
L2r完成签到,获得积分10
21秒前
look完成签到,获得积分10
21秒前
迷了路的猫完成签到,获得积分10
22秒前
剑指天涯完成签到,获得积分10
22秒前
lanjiu发布了新的文献求助10
22秒前
23秒前
23秒前
25秒前
科研通AI5应助活泼的觅云采纳,获得10
25秒前
WWWUBING完成签到,获得积分10
25秒前
宫晓丝完成签到,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798813
求助须知:如何正确求助?哪些是违规求助? 3344550
关于积分的说明 10320522
捐赠科研通 3060978
什么是DOI,文献DOI怎么找? 1679963
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386