AtPRMT5-mediated AtLCD methylation improves Cd2+ tolerance via increased H2S production in Arabidopsis

拟南芥 拟南芥 内生 突变体 细胞生物学 甲基化 生物化学 生物 野生型 半胱氨酸 化学 基因
作者
Haiyan Cao,Liang Yh,Liping Zhang,Zhiqiang Liu,Danmei Liu,Xiaofeng Cao,Xian Deng,Zhuping Jin,Yanxi Pei
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:190 (4): 2637-2650 被引量:5
标识
DOI:10.1093/plphys/kiac376
摘要

Abstract Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5), a highly conserved arginine (Arg) methyltransferase protein, regulates multiple aspects of the growth, development, and environmental stress responses by methylating Arg in histones and some mRNA splicing-related proteins in plants. Hydrogen sulfide (H2S) is a recently characterized gasotransmitter that also regulates various important physiological processes. l-cysteine desulfhydrase (LCD) is a key enzyme of endogenous H2S production. However, our understanding of the upstream regulatory mechanisms of endogenous H2S production is limited in plant cells. Here, we confirmed that AtPRMT5 increases the enzymatic activity of AtLCD through methylation modifications during stress responses. Both atprmt5 and atlcd mutants were sensitive to cadmium (Cd2+), whereas the overexpression (OE) of AtPRMT5 or AtLCD enhanced the Cd2+ tolerance of plants. AtPRMT5 methylated AtLCD at Arg-83, leading to a significant increase in AtLCD enzymatic activity. The Cd2+ sensitivity of atprmt5-2 atlcd double mutants was consistent with that of atlcd plants. When AtPRMT5 was overexpressed in the atlcd mutant, the Cd2+ tolerance of plants was significantly lower than that of AtPRMT5-OE plants in the wild-type background. These results were confirmed in pharmacological experiments. Thus, AtPRMT5 methylation of AtLCD increases its enzymatic activity, thereby strengthening the endogenous H2S signal and ultimately improving plant tolerance to Cd2+ stress. These findings provide further insights into the substrates of AtPRMT5 and increase our understanding of the regulatory mechanism upstream of H2S signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bailey发布了新的文献求助10
刚刚
1秒前
zeng完成签到,获得积分10
1秒前
1秒前
3秒前
4秒前
5秒前
7秒前
积极从蕾发布了新的文献求助10
9秒前
所所应助叶远望采纳,获得10
9秒前
10秒前
七里香应助文件撤销了驳回
10秒前
CG2021发布了新的文献求助10
11秒前
檀江完成签到 ,获得积分10
12秒前
共享精神应助Y哦莫哦莫采纳,获得10
14秒前
千俞完成签到 ,获得积分10
14秒前
15秒前
15秒前
TOO完成签到 ,获得积分10
18秒前
18秒前
甜美无剑发布了新的文献求助10
18秒前
19秒前
20秒前
小白应助Rjy采纳,获得20
21秒前
今后应助Zll采纳,获得10
23秒前
闲来逛逛007完成签到 ,获得积分10
24秒前
hachi发布了新的文献求助10
24秒前
aliaxs发布了新的文献求助10
25秒前
26秒前
27秒前
爱听歌采白完成签到,获得积分10
27秒前
吃饱喝足就睡觉完成签到 ,获得积分10
27秒前
29秒前
30秒前
852应助吕懿采纳,获得10
30秒前
30秒前
8788发布了新的文献求助10
31秒前
科研通AI5应助hachi采纳,获得10
32秒前
32秒前
坦率铅笔发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784091
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240855
捐赠科研通 3044714
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800193
科研通“疑难数据库(出版商)”最低求助积分说明 759241