Fast and scalable ensemble learning method for versatile polygenic risk prediction

集成学习 多基因风险评分 计算机科学 可扩展性 机器学习 人工智能 生物 遗传学 基因 数据库 基因型 单核苷酸多态性
作者
Tony Chen,Haoyu Zhang,Rahul Mazumder,Xihong Lin
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (33)
标识
DOI:10.1073/pnas.2403210121
摘要

Polygenic risk scores (PRS) enhance population risk stratification and advance personalized medicine, but existing methods face several limitations, encompassing issues related to computational burden, predictive accuracy, and adaptability to a wide range of genetic architectures. To address these issues, we propose Aggregated L0Learn using Summary-level data (ALL-Sum), a fast and scalable ensemble learning method for computing PRS using summary statistics from genome-wide association studies (GWAS). ALL-Sum leverages a L0L2 penalized regression and ensemble learning across tuning parameters to flexibly model traits with diverse genetic architectures. In extensive large-scale simulations across a wide range of polygenicity and GWAS sample sizes, ALL-Sum consistently outperformed popular alternative methods in terms of prediction accuracy, runtime, and memory usage by 10%, 20-fold, and threefold, respectively, and demonstrated robustness to diverse genetic architectures. We validated the performance of ALL-Sum in real data analysis of 11 complex traits using GWAS summary statistics from nine data sources, including the Global Lipids Genetics Consortium, Breast Cancer Association Consortium, and FinnGen Biobank, with validation in the UK Biobank. Our results show that on average, ALL-Sum obtained PRS with 25% higher accuracy on average, with 15 times faster computation and half the memory than the current state-of-the-art methods, and had robust performance across a wide range of traits and diseases. Furthermore, our method demonstrates stable prediction when using linkage disequilibrium computed from different data sources. ALL-Sum is available as a user-friendly R software package with publicly available reference data for streamlined analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
阿飘应助科研通管家采纳,获得10
1秒前
CWNU_HAN应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
阿飘应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
何吉民完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
阿飘应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得50
2秒前
阿飘应助科研通管家采纳,获得20
2秒前
852应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
阿飘应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
CWNU_HAN应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
yxdjzwx完成签到,获得积分10
3秒前
Whim应助focco采纳,获得10
3秒前
我是老大应助活泼小霜采纳,获得10
3秒前
甘文崔发布了新的文献求助10
4秒前
aha发布了新的文献求助10
8秒前
Shamray完成签到,获得积分10
10秒前
清茶旧友完成签到,获得积分10
10秒前
10秒前
12秒前
dududu发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778345
求助须知:如何正确求助?哪些是违规求助? 3323941
关于积分的说明 10216732
捐赠科研通 3039243
什么是DOI,文献DOI怎么找? 1667897
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385