A General Concave Fairness Framework for Influence Maximization Based on Poverty Reward

最大化 贫穷 计算机科学 效用最大化 计量经济学 数学 数学优化 数理经济学 经济 经济增长
作者
Zhixiao Wang,Jiayu Zhao,Chengcheng Sun,Xiaobin Rui,Philip S. Yu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3701737
摘要

Influence maximization (IM) aims to find a group of influential nodes as initial spreaders to maximize the influence spread over a network. Yet, traditional IM algorithms have not been designed with fairness in mind, resulting in discrimination against some groups, like LGBTQ communities and racial minorities, etc. This issue has spurred research on Fair Influence Maximization (FIM). However, existing FIM studies come with some drawbacks. Firstly, most proposed notions of fairness for FIM cannot adjust the trade-off between fairness level and influence spread. Secondly, though a few specific notions of fairness allow such balancing, they are limited to a few specific concave functions, which may not be suitable for various real-world scenarios. Furthermore, none of them have studied the deep relations between the features of concave functions and the level of fairness. Thirdly, existing fairness metrics are limited to their corresponding concepts of fairness. Comparing the level of fairness across different algorithms using existing metrics can be challenging. To tackle the above problems, this paper first proposes a novel fairness notion named Poverty Reward (PR), which achieves fairness by rewarding the enrichment of groups with low utility. Based on PR, we further propose an algorithmic framework called Concave Fairness Framework (CFF) that allows any concave function that satisfies specific requirements. We also systematically clarify how fairness is improved by applying concave functions and provide an in-depth quantitative analysis of how to select appropriate concave functions for different utility distributions. Moreover, we propose the Reward of Fairness (RoF) metric that evaluates the disparity between groups. Based on RoF, an evaluation system is built to uniformly compare FIM algorithms from different fairness notions. Experiments in real-world datasets have demonstrated the validity of the CFF, as well as the proposed fairness notion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依古比古发布了新的文献求助10
刚刚
刚刚
踏雪完成签到 ,获得积分10
刚刚
万能图书馆应助独特觅儿采纳,获得10
1秒前
Ava应助小小采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
金22发布了新的文献求助20
7秒前
8秒前
充电宝应助风清扬采纳,获得10
8秒前
9秒前
9秒前
上官若男应助婧婧采纳,获得10
9秒前
9秒前
结实的凝天完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
自由中心发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
Akim应助ao采纳,获得10
14秒前
独特觅儿发布了新的文献求助10
14秒前
南下完成签到,获得积分10
16秒前
冯静完成签到,获得积分10
16秒前
锤你猪头发布了新的文献求助10
16秒前
fox199753206发布了新的文献求助10
16秒前
16秒前
lihaifeng发布了新的文献求助10
17秒前
浮浮世世发布了新的文献求助10
17秒前
gz发布了新的文献求助10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI6应助踏实小懒虫采纳,获得10
18秒前
19秒前
刘笛发布了新的文献求助10
19秒前
愤怒的店员完成签到,获得积分10
20秒前
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687