材料科学
光子晶体光纤
折射率
光学
光电子学
功勋
光纤传感器
等离子体子
光纤
制作
光子晶体
纤维
波长
物理
医学
替代医学
病理
复合材料
作者
Nazmul Hussain,Mushfiqur Rahman Masuk,Md. Faruque Hossain,Abbas Z. Kouzani
出处
期刊:Optics Express
[Optica Publishing Group]
日期:2023-07-13
卷期号:31 (16): 26910-26910
被引量:13
摘要
In this study, an ultra-wide range plasmonic refractive index sensor based on dual core photonic crystal fiber is suggested and analyzed numerically. The proposed design achieves fabrication feasibility by employing external sensing mechanism in which silver is deposited onto the flat outer surface of the fiber as plasmonic material. A thin layer of titanium oxide (TiO2) is considered on top of the silver layer for preventing its oxidation problem. The sensor attains identification of a vast array of analytes consisting a wide range of refractive indices of 1.10 - 1.45. It achieves a maximum spectral sensitivity of 24300 nm/RIU along with its corresponding resolution of 4.12 × 10-6 RIU. The maximum figure of merit of the sensor is 120 RIU-1. The sensor also supports amplitude interrogation approach and exhibits a maximum amplitude sensitivity of 172 RIU-1. The impact of the design parameters such as radius of air holes, polishing distance, thickness of silver and titanium oxide layers are investigated thoroughly. An ultra-wide detection range with high sensitivity, fabrication feasibility, and easy application make the sensor a potential candidate for detection of a wide array of bio-originated materials, chemicals, and other analytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI