Local aggregation and global attention network for hyperspectral image classification with spectral-induced aligned superpixel segmentation

计算机科学 模式识别(心理学) 人工智能 分割 高光谱成像 图形 图像分割 理论计算机科学
作者
Zhonghao Chen,Guoyong Wu,Hongmin Gao,Yao Ding,Danfeng Hong,Bing Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:232: 120828-120828 被引量:51
标识
DOI:10.1016/j.eswa.2023.120828
摘要

Recently, graph neural networks (GNNs) have been demonstrated to be a promising framework in investigating non-Euclidean dependency in hyperspectral (HS) images. Since the extraction of inter-pixel relationships using GNNs is computationally intensive, the mainstream GNN-based HS image classification (HSIC) methods often segment original images into superpixels as nodes for further graph propagation. Nevertheless, the low representation of raw spectral signatures limits the segmentation accuracy. Moreover, the preexisting GNN-based approaches have failed to consider the importance between long-range nodes. In this article, we firstly propose a novel superpixel generate strategy, called spectral-induced aligned superpixel segmentation, which can utilize the segmentation results of HS image with raw and deep abstract spectral feature simultaneously. More specifically, the deep spectral feature is excavated by a deep autoencoder. Intuitively, two fusion strategies: minimum and maximum fusion are further explored to integrate above segmentation results. Furthermore, we propose a local aggregation and global attention block (LAGAB) by incorporating graph sample and aggregate strategy and graph transformer to hierarchically explore local and global spatial features. Note that due to the aggregation of node information in the local neighborhood, the further used graph transformer can adaptively model intra-neighbor information. Consequently, a network formed by LAGABs is developed for HSIC. Comprehensive experiments conducted on four highly regarded HS data sets reveal that the proposed method exhibits promising classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陳.完成签到 ,获得积分10
1秒前
科研通AI5应助帅气的天抒采纳,获得10
2秒前
孤独的乐珍完成签到,获得积分10
6秒前
6秒前
7秒前
昏睡的蟠桃应助李思超采纳,获得260
7秒前
zephyrforzhou完成签到,获得积分10
11秒前
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
天天快乐应助科研通管家采纳,获得30
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得30
13秒前
打打应助科研通管家采纳,获得10
13秒前
冰魂应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
lwl666应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得20
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
whatever应助科研通管家采纳,获得20
14秒前
共享精神应助科研通管家采纳,获得30
14秒前
14秒前
敬老院N号应助科研通管家采纳,获得30
14秒前
Ava应助科研通管家采纳,获得10
14秒前
15秒前
Holland完成签到,获得积分10
15秒前
zhouxuefeng发布了新的文献求助10
21秒前
CipherSage应助水蓝丨剑月采纳,获得10
26秒前
Akim应助郭宇采纳,获得10
28秒前
领导范儿应助假面绅士采纳,获得10
30秒前
科研通AI2S应助ShiRz采纳,获得10
30秒前
李健的小迷弟应助ShiRz采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944