Development of Weed Detection Method in Soybean Fields Utilizing Improved DeepLabv3+ Platform

杂草 计算机科学 模式识别(心理学) 分割 人工智能 特征(语言学) 变压器 像素 特征提取 农学 电压 语言学 量子力学 生物 物理 哲学
作者
Helong Yu,Minghang Che,Han Yu,Jian Zhang
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 2889-2889 被引量:22
标识
DOI:10.3390/agronomy12112889
摘要

Accurately identifying weeds in crop fields is key to achieving selective herbicide spraying. Weed identification is made difficult by the dense distribution of weeds and crops, which makes boundary segmentation at the overlap inaccurate, and thus pixels cannot be correctly classified. To solve this problem, this study proposes a soybean field weed recognition model based on an improved DeepLabv3+ model, which uses a Swin transformer as the feature extraction backbone to enhance the model’s utilization of global information relationships, fuses feature maps of different sizes in the decoding section to enhance the utilization of features of different dimensions, and adds a convolution block attention module (CBAM) after each feature fusion to enhance the model’s utilization of focused information in the feature maps, resulting in a new weed recognition model, Swin-DeepLab. Using this model to identify a dataset containing a large number of densely distributed weedy soybean seedlings, the average intersection ratio reached 91.53%, the accuracy improved by 2.94% compared with that before the improvement with only a 48 ms increase in recognition time, and the accuracy was superior to those of other classical semantic segmentation models. The results showed that the Swin-DeepLab network proposed in this paper can successfully solve the problems of incorrect boundary contour recognition when weeds are densely distributed with crops and incorrect classification when recognition targets overlap, providing a direction for the further application of transformers in weed recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ardejiang发布了新的文献求助30
刚刚
1秒前
1秒前
知行完成签到,获得积分10
2秒前
科研通AI2S应助11采纳,获得10
2秒前
英姑应助Pen_nie采纳,获得10
3秒前
YY发布了新的文献求助10
3秒前
Winston发布了新的文献求助10
4秒前
4秒前
深情安青应助xc采纳,获得10
5秒前
勤奋的谷秋完成签到,获得积分10
6秒前
superfatcat完成签到,获得积分10
6秒前
酷波er应助dejavu采纳,获得10
7秒前
kyrry完成签到,获得积分10
8秒前
洽洽发布了新的文献求助10
8秒前
落寞臻发布了新的文献求助10
10秒前
大鹏应助Passionfruit采纳,获得10
11秒前
烟雨完成签到,获得积分10
12秒前
13秒前
斯人完成签到 ,获得积分10
13秒前
Jero完成签到 ,获得积分10
13秒前
孤独女王发布了新的文献求助10
13秒前
15秒前
华仔应助默默的无敌采纳,获得10
15秒前
15秒前
16秒前
欧阳发布了新的文献求助10
16秒前
18秒前
iorpi完成签到,获得积分10
18秒前
天使的诱惑913完成签到 ,获得积分10
18秒前
林..完成签到,获得积分10
19秒前
数学自动化完成签到,获得积分10
19秒前
19秒前
iiillya发布了新的文献求助10
19秒前
dejavu发布了新的文献求助10
20秒前
20秒前
落寞臻完成签到,获得积分10
20秒前
小七发布了新的文献求助10
22秒前
aaaaa完成签到,获得积分10
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783597
求助须知:如何正确求助?哪些是违规求助? 3328724
关于积分的说明 10238386
捐赠科研通 3044064
什么是DOI,文献DOI怎么找? 1670794
邀请新用户注册赠送积分活动 799874
科研通“疑难数据库(出版商)”最低求助积分说明 759171