Protein Language Pragmatic Analysis and Progressive Transfer Learning for Profiling Peptide–Protein Interactions

仿形(计算机编程) 计算机科学 计算生物学 蛋白质-蛋白质相互作用 化学 生物化学 生物 程序设计语言
作者
Shutao Chen,Ke Yan,Xuelong Li,Bin Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3540291
摘要

Protein complex structural data are growing at an unprecedented pace, but its complexity and diversity pose significant challenges for protein function research. Although deep learning models have been widely used to capture the syntactic structure, word semantics, or semantic meanings of polypeptide and protein sequences, these models often overlook the complex contextual information of sequences. Here, we propose interpretable interaction deep learning (IIDL)-peptide-protein interaction (PepPI), a deep learning model designed to tackle these challenges using data-driven and interpretable pragmatic analysis to profile PepPIs. IIDL-PepPI constructs bidirectional attention modules to represent the contextual information of peptides and proteins, enabling pragmatic analysis. It then adopts a progressive transfer learning framework to simultaneously predict PepPIs and identify binding residues for specific interactions, providing a solution for multilevel in-depth profiling. We validate the performance and robustness of IIDL-PepPI in accurately predicting peptide-protein binary interactions and identifying binding residues compared with the state-of-the-art methods. We further demonstrate the capability of IIDL-PepPI in peptide virtual drug screening and binding affinity assessment, which is expected to advance artificial intelligence-based peptide drug discovery and protein function elucidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
1秒前
autobot1应助科研通管家采纳,获得20
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研助手6应助科研通管家采纳,获得10
1秒前
yuanzhang应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
我不看月亮完成签到,获得积分20
2秒前
科目三应助tian采纳,获得30
2秒前
心灵美的修洁完成签到 ,获得积分10
2秒前
顾矜应助jake采纳,获得10
3秒前
ZYH完成签到 ,获得积分10
4秒前
5秒前
5秒前
xiaoliuyaonuli完成签到,获得积分10
6秒前
失眠的哈密瓜完成签到,获得积分10
6秒前
执着白云完成签到,获得积分10
8秒前
万能图书馆应助医路有你采纳,获得10
10秒前
shuang发布了新的文献求助10
10秒前
迅速海云完成签到,获得积分10
10秒前
NI发布了新的文献求助10
10秒前
老朱完成签到,获得积分10
10秒前
12秒前
YuJianQiao完成签到,获得积分10
14秒前
此君关注了科研通微信公众号
15秒前
15秒前
王王完成签到 ,获得积分10
15秒前
端庄千琴完成签到,获得积分10
16秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728