Life’s Crucial 9 and NAFLD from association to SHAP-interpreted machine learning predictions

联想(心理学) 计算机科学 人工智能 计算生物学 生物 心理学 心理治疗师
作者
Jianxin Xi,Yuguo Chen,Jie Chen,James Law,Zhongqi Fan,Guoyue Lv
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-92777-0
摘要

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Cardiovascular disease (CVD) and NAFLD share multiple common risk factors. Life's Crucial 9 (LC9), a novel indicator for comprehensive assessment of cardiovascular health (CVH), has not yet been studied in terms of its association with or predictive value for NAFLD. This study analyzed data from 10,197 participants in the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018. The association between LC9 and NAFLD was assessed using weighted logistic regression, while weighted Cox proportional hazards models were applied to evaluate the relationship between LC9 and all-cause mortality among NAFLD patients. Restricted cubic spline (RCS) analysis was conducted to explore dose-response relationships, and Kaplan-Meier survival curves were utilized to examine differences in survival outcomes. Machine learning (ML) approaches were employed to construct predictive models, with the optimal model further interpreted using SHapley Additive exPlanations (SHAP). An increase of 10 points in LC9 was negatively associated with the risk of NAFLD (model 3: OR = 0.39, 95% CI = 0.36 – 0.42, P < 0.001) and all-cause mortality in NAFLD patients (model 3: HR = 0.78, 95% CI = 0.67 – 0.91, P < 0.001). A non-linear relationship was observed between LC9 and NAFLD (P < 0.0001 for nonlinearity). Among the eight ML models, the Support Vector Machine (SVM) demonstrated the best predictive performance (AUC = 0.873). SHAP analysis indicated that LC9 was the most significant predictor in the model. LC9 demonstrated a nonlinear negative association with NAFLD and a linear negative association with all-cause mortality in NAFLD patients. Maintaining a higher LC9 score may reduce the risk of NAFLD and all-cause mortality among NAFLD patients. The predictive model developed using Support Vector Machine (SVM) exhibited strong clinical predictive value, with LC9 being the most critical factor in the model, facilitating self-risk assessment and targeted intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助开心小猪采纳,获得10
刚刚
zheng2001发布了新的文献求助10
1秒前
1秒前
打打应助澈哩采纳,获得10
1秒前
刘老哥6发布了新的文献求助10
2秒前
han完成签到,获得积分10
2秒前
Lucas应助XLT采纳,获得10
4秒前
Orange应助博士生涯太苦了采纳,获得10
4秒前
Orange应助RaynorHank采纳,获得10
5秒前
5秒前
852应助samjoo采纳,获得10
5秒前
共享精神应助小石头采纳,获得10
7秒前
完美世界应助自觉紫安采纳,获得10
7秒前
ywjkeyantong发布了新的文献求助20
9秒前
10秒前
XufangYang完成签到,获得积分10
11秒前
壮壮发布了新的文献求助10
11秒前
华仔应助蓝桉采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
怕黑豪英应助科研通管家采纳,获得10
14秒前
wuy完成签到,获得积分10
14秒前
共享精神应助logitech采纳,获得10
14秒前
14秒前
15秒前
李爱国应助活泼莫英采纳,获得10
16秒前
17秒前
19秒前
19秒前
XLT发布了新的文献求助10
19秒前
20秒前
朱朱猪猪完成签到,获得积分10
20秒前
爆米花应助聪慧豁采纳,获得10
21秒前
21秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905873
求助须知:如何正确求助?哪些是违规求助? 3451467
关于积分的说明 10864696
捐赠科研通 3176771
什么是DOI,文献DOI怎么找? 1755014
邀请新用户注册赠送积分活动 848619
科研通“疑难数据库(出版商)”最低求助积分说明 791153