Diffusion semantic segmentation model: A generative model for medical image segmentation based on joint distribution

人工智能 判别式 模式识别(心理学) 分割 计算机科学 特征(语言学) 生成模型 图像分割 特征向量 推论 计算机视觉 生成语法 哲学 语言学
作者
Tiange Liu,Jinze Li,Drew A. Torigian,Yubing Tong,Qibing Xiong,Kaige Zhang,Jayaram K. Udupa
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17928
摘要

The mainstream semantic segmentation schemes in medical image segmentation are essentially discriminative paradigms based on conditional distributions p(class|feature)$p( {class|feature} )$ . Although efficient and straightforward, this prevalent paradigm focuses solely on extracting image features while ignoring the underlying data distribution p(feature|class)$p( {feature|class} )$ . Therefore, the learned feature space exhibits inherent instability, which directly affects the precision of the model in delineating anatomical boundaries. This paper reformulates the semantic segmentation task as a distribution alignment problem for medical image segmentation, aiming to minimize the gap between model predictions and ground truth labels by modeling the joint distribution of the data. We propose a novel segmentation architecture based on joint distribution, called Denoising Semantic Segmentation Model (DSSM). We propose learning classification decision boundaries in pixel feature space and modeling joint distributions in latent feature space. Specifically, DSSM optimizes probability maps based on pixel feature classification through Bayesian posterior probabilities. To this end, we design a Feature Fusion Module (FFM) to guide the generative module in inference and provide label features for the semantic module. Furthermore, we introduce a stable Markov inference process to reduce inference offset. Finally, the joint distribution-based model is end-to-end trained in a discriminative manner, that is, maximizing p(class|feature)$p( {class|feature} )$ , which endows DSSM with the strengths of both generative and discriminative models. The image datasets utilized in this study are from different modalities, including MRI scans, x-ray images, and skin lesion photographic images, demonstrating superior performance compared to state-of-the-art (SOTA) discriminative models. Specifically, DSSM achieved a Dice coefficient of 0.8871 in MSD cardiac MRI segmentation, 0.9451 in ACDC left ventricular MRI segmentation, and 0.9647 in x-ray image segmentation. DSSM also reached 0.8731 Dice in prostate MRI segmentation. Furthermore, in the field of skin lesion segmentation, DSSM achieved a Dice score of 0.8869 on the ISIC 2018 dataset and delivered exceptional performance with 0.9421 on the PH2 dataset. Besides the Dice score, HD95, mIoU, Precision, and Recall are evaluated across the above datasets, which further demonstrate the superior performance of DSSM. Our methodology enables the stabilization of the learned feature space by effectively capturing the latent feature distribution information. Experimental results demonstrate that our model considerably outperforms traditional discriminative segmentation methods across a variety of datasets from multiple modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我叫过儿完成签到 ,获得积分10
1秒前
jjjwln完成签到,获得积分10
2秒前
小月亮完成签到 ,获得积分10
3秒前
4秒前
木子木公发布了新的文献求助10
5秒前
7秒前
7秒前
8秒前
健康的母鸡完成签到,获得积分20
8秒前
9秒前
9秒前
wF发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
果酱完成签到,获得积分10
12秒前
科研通AI5应助22222采纳,获得30
12秒前
谢佳冀完成签到,获得积分10
12秒前
所所应助昆明GG采纳,获得10
12秒前
13秒前
13秒前
晟sheng完成签到 ,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助30
13秒前
斯文山菡发布了新的文献求助10
14秒前
谢佳冀发布了新的文献求助80
15秒前
m0405发布了新的文献求助10
15秒前
苹果安露发布了新的文献求助10
16秒前
十一发布了新的文献求助30
16秒前
慕青应助滕擎采纳,获得10
16秒前
争取毕业发布了新的文献求助10
17秒前
CipherSage应助满意谷波采纳,获得10
18秒前
18秒前
科研通AI5应助vivianz采纳,获得10
21秒前
wF完成签到,获得积分10
22秒前
香蕉觅云应助yeah采纳,获得10
23秒前
丘比特应助十一采纳,获得10
24秒前
动人的黄豆完成签到,获得积分10
24秒前
小镇牛马完成签到,获得积分10
24秒前
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202170
求助须知:如何正确求助?哪些是违规求助? 3736953
关于积分的说明 11766910
捐赠科研通 3409343
什么是DOI,文献DOI怎么找? 1870570
邀请新用户注册赠送积分活动 926133
科研通“疑难数据库(出版商)”最低求助积分说明 836402