Battery state estimation via hybrid P2D modeling and adversarial deep learning in electric vehicles

电池(电) 对抗制 深度学习 汽车工程 国家(计算机科学) 计算机科学 控制工程 估计 人工智能 工程类 功率(物理) 算法 系统工程 物理 量子力学
作者
Liu Chang,Chen Jinbing,Liu Haizhong
标识
DOI:10.1177/09544070251331670
摘要

Accurate multi-state estimation of lithium-ion batteries (LIBs) is essential for electric vehicle (EV) battery management systems. Existing electrochemical models face challenges in parameter calibration, while purely data-driven methods lack physical interpretability. To address these limitations, this study proposes an integrated framework combining a pseudo-two-dimensional (P2D) electrochemical model with a generative adversarial network-long short-term memory (GAN-LSTM) architecture. A hybrid simulated annealing-particle swarm optimization (SA-PSO) algorithm was developed for non-invasive parameter calibration of the Tesla Model S battery P2D model, achieving a mean absolute error (MAE) of 0.027 V in terminal voltage prediction during 1C constant-current discharge. The calibrated model, integrated with vehicle dynamics simulations, generated physics-based multivariate time-series data across diverse operational scenarios. These data were utilized to train the GAN-LSTM framework, which synergizes LSTM’s temporal modeling with GAN’s adversarial training for robust state estimation. Experimental results demonstrate the framework’s high accuracy, with determination coefficients ( R 2 ) of 0.9965 for state of charge (SOC) and 0.9843 for state of health (SOH). This work establishes a novel methodology that bridges electrochemical mechanisms with data-driven modeling, providing a physics-informed solution for multi-state battery estimation without relying on artificial feature engineering or unvalidated assumptions. The proposed framework offers practical value for next-generation battery management systems in real-world EV applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cassie完成签到,获得积分10
1秒前
SOLKATT发布了新的文献求助10
1秒前
Dr Niu应助魏一一采纳,获得10
1秒前
李健应助小趴菜求棒棒采纳,获得10
2秒前
Li发布了新的文献求助10
3秒前
quan完成签到,获得积分10
3秒前
听海余温关注了科研通微信公众号
4秒前
RSW发布了新的文献求助10
4秒前
万能图书馆应助风笛采纳,获得10
4秒前
阁主完成签到,获得积分10
5秒前
橘子完成签到 ,获得积分10
6秒前
6秒前
开心的懂完成签到 ,获得积分10
7秒前
7秒前
8秒前
苦哈哈完成签到,获得积分10
10秒前
香蕉觅云应助Darius采纳,获得10
12秒前
12秒前
panana发布了新的文献求助10
12秒前
SOLKATT完成签到,获得积分10
13秒前
llll发布了新的文献求助10
13秒前
AuH应助11采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
16秒前
吃饭吧发布了新的文献求助30
16秒前
shuan发布了新的文献求助10
16秒前
17秒前
Yogita发布了新的文献求助10
19秒前
19秒前
北北发布了新的文献求助10
19秒前
风笛发布了新的文献求助10
19秒前
22秒前
舒适山槐发布了新的文献求助10
23秒前
24秒前
英俊的铭应助北北采纳,获得10
24秒前
ggg发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4493425
求助须知:如何正确求助?哪些是违规求助? 3946571
关于积分的说明 12237247
捐赠科研通 3603904
什么是DOI,文献DOI怎么找? 1982176
邀请新用户注册赠送积分活动 1018825
科研通“疑难数据库(出版商)”最低求助积分说明 911490