已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A transfer method to estimate hub-height wind speed from 10 meters wind speed based on machine learning

风速 气象学 风力发电 环境科学 日循环 气候变化 温室气体 气候模式 算法 计算机科学 工程类 地理 地质学 海洋学 电气工程
作者
Shuang Yu,Robert Vautard
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:169: 112897-112897 被引量:13
标识
DOI:10.1016/j.rser.2022.112897
摘要

The estimation of hub-height wind speed is critical to a comprehensive wind resource assessment, particularly for the evaluation of future energy mix scenarios. However, gridded datasets of wind speeds are often limited to near-surface winds, especially when it comes to climate model projections, which is a real limitation for using climate models. This study develops a transfer method to calculate 100 m wind speed using three machine learning methods, including the Least Absolute Shrinkage Selector Operator, Random Forest (RF) and extreme Gradient Boost (XGBoost). Compared with the traditional algorithm, based on empirical formulae, the tested machine learning-based algorithms allow much more accurate estimates of 100 m wind speeds. RF and XGBoost have good performance on the hourly scale, and correct the major biases of the classical, simplified algorithms, especially in the diurnal cycle of hub-height wind speeds. RF appears to be the best algorithm when compared with the reanalysis data. In addition, the machine learning transfer model is applied to 19 regional climate projections. Results show that the 100 m wind speed has decreased in most of Europe during 1979–2019, which is consistent with the observed stilling of surface winds in recent years. This trend is projected to increase in the future, under an uncurbed greenhouse gas emission scenario, which indicates adverse effects for the development of wind power generation in Europe. The approach established in this study can be applied to obtain numerical climate model outputs accurately, which is critical to the estimation of the long-term changes of global renewable energy resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gugu完成签到,获得积分10
3秒前
gugu发布了新的文献求助10
7秒前
rita_sun1969完成签到,获得积分10
8秒前
wanli完成签到,获得积分10
9秒前
敏感的花瓣完成签到,获得积分20
13秒前
1325850238完成签到 ,获得积分10
14秒前
14秒前
小泉完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
1234完成签到 ,获得积分10
19秒前
lemon发布了新的文献求助10
19秒前
20秒前
Jeffery发布了新的文献求助30
23秒前
likey发布了新的文献求助10
24秒前
徐若楠发布了新的文献求助10
25秒前
江小鱼在查文献完成签到,获得积分10
26秒前
李健应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
慕青应助科研通管家采纳,获得10
27秒前
Danw完成签到 ,获得积分10
27秒前
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
27秒前
酷波er应助徐若楠采纳,获得10
32秒前
研友_LN7bvn完成签到,获得积分10
36秒前
满意一曲发布了新的文献求助10
39秒前
sobergod完成签到 ,获得积分10
42秒前
斯文败类应助神内小大夫采纳,获得10
47秒前
17完成签到 ,获得积分10
48秒前
爆米花应助吴彦祖采纳,获得10
52秒前
肖舒震完成签到,获得积分20
56秒前
57秒前
科研通AI5应助likey采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777504
求助须知:如何正确求助?哪些是违规求助? 3322864
关于积分的说明 10212284
捐赠科研通 3038229
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201