The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems

濒危物种 消光(光学矿物学) 槟榔科 生态学 物种丰富度 生物多样性 农林复合经营 生物 棕榈 地理 栖息地 量子力学 物理 古生物学
作者
Sidonie Bellot,Youlin Lu,Alexandre Antonelli,William J. Baker,John Dransfield,Félix Forest,W. Daniel Kissling,Ilia J. Leitch,Eimear Nic Lughadha,Ian Ondo,Samuel Pironon,Barnaby E. Walker,Rodrigo Cámara‐Leret,Steven P. Bachman
出处
期刊:Nature Ecology and Evolution [Nature Portfolio]
卷期号:6 (11): 1710-1722 被引量:19
标识
DOI:10.1038/s41559-022-01858-0
摘要

Protecting nature’s contributions to people requires accelerating extinction risk assessment and better integrating evolutionary, functional and used diversity with conservation planning. Here, we report machine learning extinction risk predictions for 1,381 palm species (Arecaceae), a plant family of high socio-economic and ecological importance. We integrate these predictions with published assessments for 508 species (covering 75% of all palm species) and we identify top-priority regions for palm conservation on the basis of their proportion of threatened evolutionarily distinct, functionally distinct and used species. Finally, we explore palm use resilience to identify non-threatened species that could potentially serve as substitutes for threatened used species by providing similar products. We estimate that over a thousand palms (56%) are probably threatened, including 185 species with documented uses. Some regions (New Guinea, Vanuatu and Vietnam) emerge as top ten priorities for conservation only after incorporating machine learning extinction risk predictions. Potential substitutes are identified for 91% of the threatened used species and regional use resilience increases with total palm richness. However, 16 threatened used species lack potential substitutes and 30 regions lack substitutes for at least one of their threatened used palm species. Overall, we show that hundreds of species of this keystone family face extinction, some of them probably irreplaceable, at least locally. This highlights the need for urgent actions to avoid major repercussions on palm-associated ecosystem processes and human livelihoods in the coming decades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
养乐多完成签到,获得积分10
刚刚
1秒前
1秒前
淡定自中完成签到 ,获得积分10
1秒前
生动初蓝完成签到,获得积分10
1秒前
胡杨树2006完成签到,获得积分10
2秒前
哈基米德应助dream采纳,获得10
2秒前
oneonlycrown完成签到,获得积分10
3秒前
3秒前
Lyw发布了新的文献求助10
3秒前
lidd完成签到,获得积分10
3秒前
快乐的麦片完成签到 ,获得积分10
4秒前
4秒前
FashionBoy应助隐形的笑白采纳,获得10
4秒前
4秒前
希望天下0贩的0应助h7nho采纳,获得10
4秒前
科研混子表锅完成签到,获得积分10
4秒前
xuexue发布了新的文献求助10
5秒前
cyz完成签到,获得积分10
5秒前
6秒前
勤奋旭尧完成签到,获得积分10
6秒前
zzx完成签到,获得积分10
7秒前
nick完成签到,获得积分10
7秒前
落寞白曼完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Bi8bo发布了新的文献求助10
8秒前
8秒前
8秒前
茉莉完成签到,获得积分10
9秒前
bkagyin应助SwampMan采纳,获得10
9秒前
9秒前
感性的俊驰完成签到 ,获得积分10
9秒前
二由完成签到 ,获得积分10
10秒前
10秒前
YJ完成签到,获得积分10
10秒前
椰子完成签到 ,获得积分10
10秒前
lixj完成签到,获得积分10
10秒前
Lay完成签到 ,获得积分10
10秒前
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044